<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      二次函數教學課件

      時間:2021-03-30 10:15:21 教學課件 我要投稿

      二次函數教學課件

        創設問題情境,讓學生從生活中發現數學問題,激發學生學習數學的興趣。下面是小編整理的二次函數教學課件,歡迎大家閱讀參考。

      二次函數教學課件

        教學目標與要求:

        (1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法。

        (2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的能力.

        (3)情感、態度與價值觀:通過觀察、交流,歸納等數學活動加深對二次函數概念的理解,發展學生的數學思維,增強學好數學的愿望與信心.

        教學重點:對二次函數概念的理解。

        教學難點:由實際問題確定函數解析式

        教學過程:

        1、 問題感知,情境切入.

        教師展示實際問題:

        “第18屆世界杯足球賽”是今年夏天最“熱”的一個話題,綠蔭場上運動員揮汗如雨,綠蔭場外教練員運籌帷幄.足球運動是一項對運動員狀態(包括體能、速度和技術意識)要求很高的項目,一般情況下,足球運動員的狀態會隨著時間的變化而變化:比賽開始后,球員慢慢進入狀態,中間有一段時間球員保持較為理想的狀態,隨后球員的狀態慢慢下降.經實驗分析可知:球員的狀態綜合指數y隨時間t的變化規律有如下關系:

        (1)比賽開始后第10分鐘時與比賽開始后第50分鐘時比較,什么時間球員的狀態更好?

        (2)比賽開始后多少分鐘時,球員的狀態最好,這樣的最好狀態能持續多少分鐘?

        通過學生之間的討論,很容易得出第(1)問的答案:比賽開始后第10分鐘時,y = 140;比賽開始后第50分鐘時,y = 220;所以,比賽開始后第50分鐘時球員的狀態更好.

        當學生開始進行第(2)問的解答時,遇到了不同的困難:

        (1)不知道如何討論當50 t 90時,y的變化范圍?

        (2)通過模仿一次函數的性質,學生求出了函數y = 中,y的變化范圍是 .卻無法說出這樣做的數學依據是什么?

        所有的困難都指向一個焦點問題:

        y = 是個什么樣的函數?它具有什么樣的獨特性質?

        因此,學生產生了研究函數y = 的興趣,教師趁勢提出今天的學習內容.

        以“世界杯足球賽”這樣貼近學生生活實際的問題為背景,力求更好地激發學生的求知欲,使之成為主動、積極的探索者,并在解決實際問題的過程中體驗成功的快樂,同時為新課的引出和學習奠定了基礎.這是一道結合實際的自編題,其中的數據來源于自己做的社會調查.足球運動是一項集體運動項目,對運動員的配合意識要求很高,所以運動員上場后30分鐘左右才進入最佳狀態,中場休息后狀態仍能保持到最佳,50分鐘后由于體能的下降影響了狀態的發揮.

        2、講解新課,提煉知識.

        (1)對比、分析

        教師舉出生活中的其它實例,感受二次函數的意義,進一步深化對二次函數概念的認識.

        ① 如圖,正方形中圓的半徑是4cm,陰影部分的面積Q(cm2)和正方形的邊長a(cm)的函數關系式是____________________.

        ② 某種藥品現價每盒26元,計劃兩年內每年的降價率都為p,那么,兩年后這種藥品每盒的價格M(元)和年降價率p的函數關系式是____________________.

        答案:M = 26(1- p)2

        (2)類比、遷移

        教師順勢提問:對y = 、Q = a2 - 16 、M = 26(1- p)2這三個函數你能用一個一般形式來表示嗎?

        教師參與到學生的分組討論中去,合作交流,注意及時抓住學生智慧火花的閃現進行引導.教師鼓勵學生用不同字母表示,只要把握概念的實質即可,必要時可提示學生,類比一次函數的知識.

        (3)二次函數的認識

        一般地,我們把形如y = ax2 + bx + c(a≠0)(說明:括號內的條件,在第(4)步之后再補寫)的函數叫做二次函數,其中a、b分別是二次項系數、一次項系數,c是常數項.

        (4)加深理解

        二次函數的定義給出后,教師引導學生分別討論“a、b、c的取值范圍”.學生就問題自由發言,教師充分引導學生發表自己的看法,只要合理,都應肯定.最后師生達到共識:

        ① a不能為0,因為當a=0時,右邊不再是x的二次式;

        ② b、c都能為0,因為當b=0 、c=0或b、c都為0時,右邊仍是x的二次式.

        教師對所得出的'常量范圍,進行概念補寫.

        通過兩個實例的分析,讓學生通過自己列解析式,來思考所列解析式的結構特征,為概括二次函數的定義打下基礎.

        引導學生側重從解析式的特征思考,透過“引用不同字母” 的表層現象,看到解析式的“結構一致”的本質.敞開思想,廣泛議論,實現對二次函數本質的認識.充分肯定學生的探究結果,使其樹立“我也能發現數學”的信心.教師的提問意在引起學生的思維沖突,使之產生探究的欲望.遵循學生認知發展及知識系統的形成過程,由一般到特殊逐步為概念的理解鋪平道路.

        3、分層實踐,能力升級.

        (1)[快速搶答]下面各函數中,哪些是二次函數?

        ① y = 2x2 ② y = - x2 + 3

        ③ y = (x≠0) ④ y = 15x -1

        ⑤ y = (x + 1)2 +2 ⑥ y = 3x2-2x-5

        ⑦ y = -x(x2 + 4) ⑧ y =

        答:①、②、⑤、⑥是二次函數

        (2)[請你幫個忙]:某果園有100棵橘子樹,每一棵樹平均結600個橘子.現準備多種一些橘子樹以提高產量,但是如果多種樹,那么樹與樹之間的距離和每一棵樹所接受的陽光就會減少.根據經驗估計,每多種一棵樹,平均每棵樹就會少結5個橘子.那么,如何表示增種的橘子樹的數量x(棵)與橘子總產量y(個)之間的函數關系式呢?判斷這個函數的類型,如果是二次函數,寫出解析式中的a、b、c.

        答案:

        解析式中的a = - 5,b = 100,c = 60000.

        興趣是學習的動力源泉,學生在參與編題的過程中,培養了與人合作的精神和創新意識,通過學生多層次、多角度地解決問題的方式,使原本枯燥的數學課堂逐漸被開放、熱烈,富于創造性的課堂氣氛所代替,成為激發學生潛力的最佳土壤.

        4、展示交流,總結新知.

        (1)學生自己總結,并在班上交流

        (2)結合學生所述,教師給予指導

        ① 正確理解“二次函數”定義,關注和定義有關的注意問題.

        ② 生活中處處有數學的影子,只要留心觀察身邊的事物,開動腦筋,就能用數學知識解決許多的生活實際問題.

        課堂小結以教師提問、學生自由討論的形式進行,借此促進師生心靈的交流,學生對自己清醒的認識和總結,必然促進其自主學習,獲得可持續發展的動力.

        5、布置作業、鞏固知識.

        (1)閱讀教材相應內容,完成課后習題第45--46頁第1、2題.

        (2)實踐題:推測植物的生長與溫度的關系

      《&.doc》
      将本文的Word文档下载到电脑,方便收藏和打印
      推荐度:
      点击下载文档

      【二次函數教學課件】相關文章:

      二次函數超級經典課件教案05-13

      二次函數說課稿02-17

      《集合與函數》課件設計05-08

      《對數函數》課件設計05-08

      一次函數的教學設計課件02-17

      二次函數的圖像說課稿11-04

      二次函數說課稿(11篇)02-17

      二次函數說課稿11篇11-15

      二次函數的說課稿(精選5篇)05-12

      數學二次函數復習資料08-27

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        亚洲首页AV免费观看在线 | 亚洲影视一区在线观看 | 亚洲中文Av高清中文Av | 亚洲国产精品VA在线看黑屌 | 亚洲精品视频在线 | 中文字幕一区二区三区在线观看 |

        二次函數教學課件

          創設問題情境,讓學生從生活中發現數學問題,激發學生學習數學的興趣。下面是小編整理的二次函數教學課件,歡迎大家閱讀參考。

        二次函數教學課件

          教學目標與要求:

          (1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法。

          (2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的能力.

          (3)情感、態度與價值觀:通過觀察、交流,歸納等數學活動加深對二次函數概念的理解,發展學生的數學思維,增強學好數學的愿望與信心.

          教學重點:對二次函數概念的理解。

          教學難點:由實際問題確定函數解析式

          教學過程:

          1、 問題感知,情境切入.

          教師展示實際問題:

          “第18屆世界杯足球賽”是今年夏天最“熱”的一個話題,綠蔭場上運動員揮汗如雨,綠蔭場外教練員運籌帷幄.足球運動是一項對運動員狀態(包括體能、速度和技術意識)要求很高的項目,一般情況下,足球運動員的狀態會隨著時間的變化而變化:比賽開始后,球員慢慢進入狀態,中間有一段時間球員保持較為理想的狀態,隨后球員的狀態慢慢下降.經實驗分析可知:球員的狀態綜合指數y隨時間t的變化規律有如下關系:

          (1)比賽開始后第10分鐘時與比賽開始后第50分鐘時比較,什么時間球員的狀態更好?

          (2)比賽開始后多少分鐘時,球員的狀態最好,這樣的最好狀態能持續多少分鐘?

          通過學生之間的討論,很容易得出第(1)問的答案:比賽開始后第10分鐘時,y = 140;比賽開始后第50分鐘時,y = 220;所以,比賽開始后第50分鐘時球員的狀態更好.

          當學生開始進行第(2)問的解答時,遇到了不同的困難:

          (1)不知道如何討論當50 t 90時,y的變化范圍?

          (2)通過模仿一次函數的性質,學生求出了函數y = 中,y的變化范圍是 .卻無法說出這樣做的數學依據是什么?

          所有的困難都指向一個焦點問題:

          y = 是個什么樣的函數?它具有什么樣的獨特性質?

          因此,學生產生了研究函數y = 的興趣,教師趁勢提出今天的學習內容.

          以“世界杯足球賽”這樣貼近學生生活實際的問題為背景,力求更好地激發學生的求知欲,使之成為主動、積極的探索者,并在解決實際問題的過程中體驗成功的快樂,同時為新課的引出和學習奠定了基礎.這是一道結合實際的自編題,其中的數據來源于自己做的社會調查.足球運動是一項集體運動項目,對運動員的配合意識要求很高,所以運動員上場后30分鐘左右才進入最佳狀態,中場休息后狀態仍能保持到最佳,50分鐘后由于體能的下降影響了狀態的發揮.

          2、講解新課,提煉知識.

          (1)對比、分析

          教師舉出生活中的其它實例,感受二次函數的意義,進一步深化對二次函數概念的認識.

          ① 如圖,正方形中圓的半徑是4cm,陰影部分的面積Q(cm2)和正方形的邊長a(cm)的函數關系式是____________________.

          ② 某種藥品現價每盒26元,計劃兩年內每年的降價率都為p,那么,兩年后這種藥品每盒的價格M(元)和年降價率p的函數關系式是____________________.

          答案:M = 26(1- p)2

          (2)類比、遷移

          教師順勢提問:對y = 、Q = a2 - 16 、M = 26(1- p)2這三個函數你能用一個一般形式來表示嗎?

          教師參與到學生的分組討論中去,合作交流,注意及時抓住學生智慧火花的閃現進行引導.教師鼓勵學生用不同字母表示,只要把握概念的實質即可,必要時可提示學生,類比一次函數的知識.

          (3)二次函數的認識

          一般地,我們把形如y = ax2 + bx + c(a≠0)(說明:括號內的條件,在第(4)步之后再補寫)的函數叫做二次函數,其中a、b分別是二次項系數、一次項系數,c是常數項.

          (4)加深理解

          二次函數的定義給出后,教師引導學生分別討論“a、b、c的取值范圍”.學生就問題自由發言,教師充分引導學生發表自己的看法,只要合理,都應肯定.最后師生達到共識:

          ① a不能為0,因為當a=0時,右邊不再是x的二次式;

          ② b、c都能為0,因為當b=0 、c=0或b、c都為0時,右邊仍是x的二次式.

          教師對所得出的'常量范圍,進行概念補寫.

          通過兩個實例的分析,讓學生通過自己列解析式,來思考所列解析式的結構特征,為概括二次函數的定義打下基礎.

          引導學生側重從解析式的特征思考,透過“引用不同字母” 的表層現象,看到解析式的“結構一致”的本質.敞開思想,廣泛議論,實現對二次函數本質的認識.充分肯定學生的探究結果,使其樹立“我也能發現數學”的信心.教師的提問意在引起學生的思維沖突,使之產生探究的欲望.遵循學生認知發展及知識系統的形成過程,由一般到特殊逐步為概念的理解鋪平道路.

          3、分層實踐,能力升級.

          (1)[快速搶答]下面各函數中,哪些是二次函數?

          ① y = 2x2 ② y = - x2 + 3

          ③ y = (x≠0) ④ y = 15x -1

          ⑤ y = (x + 1)2 +2 ⑥ y = 3x2-2x-5

          ⑦ y = -x(x2 + 4) ⑧ y =

          答:①、②、⑤、⑥是二次函數

          (2)[請你幫個忙]:某果園有100棵橘子樹,每一棵樹平均結600個橘子.現準備多種一些橘子樹以提高產量,但是如果多種樹,那么樹與樹之間的距離和每一棵樹所接受的陽光就會減少.根據經驗估計,每多種一棵樹,平均每棵樹就會少結5個橘子.那么,如何表示增種的橘子樹的數量x(棵)與橘子總產量y(個)之間的函數關系式呢?判斷這個函數的類型,如果是二次函數,寫出解析式中的a、b、c.

          答案:

          解析式中的a = - 5,b = 100,c = 60000.

          興趣是學習的動力源泉,學生在參與編題的過程中,培養了與人合作的精神和創新意識,通過學生多層次、多角度地解決問題的方式,使原本枯燥的數學課堂逐漸被開放、熱烈,富于創造性的課堂氣氛所代替,成為激發學生潛力的最佳土壤.

          4、展示交流,總結新知.

          (1)學生自己總結,并在班上交流

          (2)結合學生所述,教師給予指導

          ① 正確理解“二次函數”定義,關注和定義有關的注意問題.

          ② 生活中處處有數學的影子,只要留心觀察身邊的事物,開動腦筋,就能用數學知識解決許多的生活實際問題.

          課堂小結以教師提問、學生自由討論的形式進行,借此促進師生心靈的交流,學生對自己清醒的認識和總結,必然促進其自主學習,獲得可持續發展的動力.

          5、布置作業、鞏固知識.

          (1)閱讀教材相應內容,完成課后習題第45--46頁第1、2題.

          (2)實踐題:推測植物的生長與溫度的關系