<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      勾股定理說課稿

      時間:2025-03-14 12:30:02 晶敏 說課稿 我要投稿

      關于勾股定理說課稿 (精選13篇)

        作為一名專為他人授業解惑的人民教師,常常要寫一份優秀的說課稿,說課稿有助于提高教師理論素養和駕馭教材的能力。那么你有了解過說課稿嗎?以下是小編整理的關于勾股定理說課稿 勾股定理第一課時說課稿,僅供參考,希望能夠幫助到大家。

      關于勾股定理說課稿 (精選13篇)

        勾股定理說課稿 1

        一、教材分析:

        (一)本節內容在全書和章節的地位。

        這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

        (二)三維教學目標:

        1、知識與能力目標。

        (1)理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

        (2)通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

        2、過程與方法目標。

        在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

        3、情感態度與價值觀。

        通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。

        (三)教學重點、難點:

        1、教學重點:勾股定理的證明與運用

        2、教學難點:用面積法等方法證明勾股定理

        3、難點成因:

        對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

        4、突破措施:

        (1)創設情景,激發思維:

        創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;

        (2)自主探索,敢于猜想:

        充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;

        (3)張揚個性,展示風采:

        實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

        二、教法與學法分析:

        1、教法分析:

        數學是一門培養人的思維,發展人的`思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業”六個方面。

        2、學法分析:

        新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

        三、教學過程設計:

        (一)創設情景:

        多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

        問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

        (二)動手操作:

        1、課件出示課本P99圖19.2.1:

        觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

        學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現SP+SQ=SR(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

        2、緊接著讓學生思考:

        上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

        3、再問:

        當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

        (三)歸納驗證:

        1、歸納:

        通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。

        2、驗證:

        先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。

        (四)問題解決:

        1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

        2、自學課本P101例1,然后完成P102練習。

        (五)課堂小結:

        1、小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

        2、教師用多媒體介紹“勾股定理史話”。

        (1)《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。

        (2)康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。

        3、目的:對學生進行愛國主義教育,激勵學生奮發向上。

        (六)布置作業:

        課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

        以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

        勾股定理說課稿 2

        一、教材分析

        (一)教材地位與作用

        勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

        (二)教學目標知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。情感態度與價值觀:激發愛國熱情,體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。

        (三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

        教學難點:用面積法(拼圖法)發現勾股定理。

        突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

        二、教法與學法分析:

        學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力。他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強。

        教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的.過程。

        學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

        三、教學過程設計

        1、創設情境,提出問題

        2、實驗操作,模型構建

        3、回歸生活,應用新知

        4、知識拓展,鞏固深化

        5、感悟收獲,布置作業

        (一)創設情境提出問題

        (1)圖片欣賞:勾股定理數形圖xxxx年希臘發行。美麗的勾股樹20xx年國際數學的一枚紀念郵票。

        設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

        (2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

        設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。

        (二)實驗操作模型構建

        1、等腰直角三角形(數格子)

        2、一般直角三角形(割補)

        問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。

        問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

        設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

        通過以上實驗歸納總結勾股定理。

        設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律。

        (三)回歸生活應用新知

        讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

        (四)知識拓展鞏固深化

        基礎題,情境題,探索題。

        設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。

        基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

        設計意圖:這道題立足于雙基。通過學生自己創設情境,鍛煉了發散思維。

        情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

        設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

        探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

        設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。

        (五)感悟收獲布置作業:這節課你的收獲是什么?

        作業:

        1、課本習題2、1

        2、搜集有關勾股定理證明的資料。

        板書設計

        探索勾股定理

        如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。

        設計說明:

        1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。

        2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

        勾股定理說課稿 3

        一、教學目標

        (一)知識點

        1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。

        2、會利用勾股定理解釋生活中的簡單現象。

        (二)能力訓練要求

        1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發展合情推理能力,體會數形結合的思想。

        2、在探索勾股定理的過程中,發展學生歸納、概括和有條理地表達活動過程及結論的能力。

        (三)情感與價值觀要求

        1、培養學生積極參與、合作交流的意識。

        2、在探索勾股定理的`過程中,體驗獲得成功的快樂,鍛煉學生克服困難的勇氣。

        二、教學重、難點

        重點:

        探索和驗證勾股定理。

        難點:

        在方格紙上通過計算面積的方法探索勾股定理。

        三、教學方法

        交流探索猜想。

        在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關系。

        四、教具準備

        1、學生每人課前準備若干張方格紙。

        2、投影片三張:

        第一張:填空(記作1.1。1 A);

        第二張:問題串(記作1.1。1 B);

        第三張:做一做(記作1.1。1 C)。

        五。教學過程

        Ⅰ。創設問題情境,引入新課

        出示投影片(1.1。1 A)

        (1)三角形按角分類,可分為_________、_________、_________。

        (2)對于一般的三角形來說,判斷它們全等的條件有哪些?對于直角三角形呢?

        (3)有兩個直角三角形,如果有兩條邊對應相等,那么這兩個直角三角形一定全等嗎?

        勾股定理說課稿 4

        一、說教材

        勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

        據此,制定教學目標如下:

        1、理解并掌握勾股定理及其證明。

        2、能夠靈活地運用勾股定理及其計算。

        3、培養學生觀察、比較、分析、推理的能力。

        4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

        教學重點:勾股定理的證明和應用。

        教學難點:勾股定理的證明。

        二、說教法和學法

        教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

        1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓同學們主動參與學習全過程。

        2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

        3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

        三、教學程序

        本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

        (一)創設情境 以古引新

        1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。

        2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

        3、板書課題,出示學習目標。

        (二)初步感知 理解教材

        教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

        (三)質疑解難 討論歸納

        1、教師設疑或學生提疑。如:如何證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發同學們的表現欲。

        2、教師引導學生按照要求進行拼圖,觀察并分析;

        (1)這兩個圖形有什么特點?

        (2)你能寫出這兩個圖形的面積嗎?

        (3)如何運用勾股定理?是否還有其他形式?

        這時教師組織學生分組討論,調動全體學生的'積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

        (四)鞏固練習 強化提高

        1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

        2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

        (五)歸納總結 練習反饋

        引導同學們對知識要點進行總結,梳理學習思路。分發自我反饋練習,同學們獨立完成。

        本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

        勾股定理說課稿 5


        一、 教材分析

        1. 教材的地位和作用

        它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。

        因此他的教育教學價值就具體體現在如下三維目標中:

        知識與技能:

        1、經歷勾股定理的探索過程,體會數形結合思想。

        2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

        過程與方法:

        1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發現的過程,由特殊到一般的解決問題的方法。

        2、在觀察、猜想、歸納、驗證等過程中培養學生們的數學語言表達能力和初步的邏輯推理能力。

        情感、態度與價值觀:

        1、通過對勾股定理歷史的了解,感受數學文化,激發學習興趣。

        2、在探究活動中,體驗解決問題方法的多樣性,培養學生們的合作意識和然所精神。

        3、讓學生們通過動手實踐,增強探究和創新意識,體驗研究過程,學習研究方法,逐步養成一種積極的生動的,自助合作探究的學習方式。

        由于八年級的學生們具有一定分析能力,但活動經驗不足,所以

        本節課教學重點:勾股定理的探索過程,并掌握和運用它。

        教學難點:分割,補全法證面積相等,探索勾股定理。

        二..教法學法分析:

        要上好一堂課,就是要把所確定的'三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

        先從學生們熟知的生活實例出發,以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生們自己的課堂。

        學法:我想通過“操作+思考”這樣方式,有效地讓學生們在動手、動腦、自主探究與合作交流中來發現新知,同時讓學生們感悟到:學習任何知識的最好方法就是自己去探究。

        三、 教學程序設計

        1、 故事引入新課,激起學生們學習興趣。

        牛頓,瓦特的故事,讓學生們科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發現引入新課。

        2、探索新知

        在這里我設計了四個內容:

        ①探索等腰直角三角形三邊的關系

        ②邊長為3、4、5為邊長的直角三角形的三邊關系

        ③學生們畫兩直角邊為2,6的直角三角形,探索三邊的關系

        ④三邊為a、b、c的直角三角形的三邊的關系,(證明)

        ⑤勾股定理歷史介紹,讓學生們體會勾股定理的文化價值。

        體現從特殊到一般的發現問題的過程。

        3、新知運用:

        ①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

        ②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

        ③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

        ④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了 步路(假設2步為1米),卻踩傷了花草.

        4、小結本課:

        學完了這節課,你有什么收獲?

        老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節課學習它。

        勾股定理說課稿 6

        一、教材分析

        教材所處的地位與作用

        “探索勾股定理”是人教版八年級《數學》下冊內容。“勾股定理”是安排在學生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數與形密切聯系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產、生活中也有很大的用途。

        二、教學目標

        綜上分析及教學大綱要求,本課時教學目標制定如下:

        1、知識目標

         知道勾股定理的由來,初步理解割補拼接的面積證法。

         掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

        2、能力目標

         在探索勾股定理的過程中,讓學生經歷“觀察——合理猜想——歸納——驗證”的數學思想,并體會數形結合以及由特殊到一般的思想方法,培養學生的觀察力、抽象概括能力、創造想象能力以及科學探究問題的能力。

        3、情感目標

         通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數學知識的發生、發展過程。

         介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發學生的數學激情及愛國情感。

        三、教學重難點

        本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。

        四、教學問題診斷

        本 節主要攻克的問題就是本節的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數學結論的數形結合思想,對于學生來說, 有些陌生,難以理解,又加之數學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現狀,我在教法和學法上都進行了改進。

        五、教法與學法分析

        [教學方法與手段] 針對八年級學生的知識結構和心理特征,本節課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。

        [學法分析] 在教師組織引導下,采用自主探索、合作交流的.方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。

        六、教學流程設計

        1、創設情境,引入新課

        本節課開始利用多媒體介紹了在北京召開的2002年 國際數學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發學生的興趣和民族自豪感,它是課堂教學的重要一環。“好的開始是成功的一半”,在 課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學 生思維的閘門,激勵探究,使學生的學習狀態由被動變為主動,在輕松愉悅的氛圍中學到知識。

        2、觀察發現,類比猜想

        讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結 論。最后對此結論通過在網格中數格子進行驗證,讓學生經歷了“觀察——合理猜測——歸納——驗證”的這一數學思想。在數格子的驗證過程中,發現任意直角三 角形(圖2)斜邊上長出的正方形中網格不規則,沒法數出。通過同學們的討論,發現數不出來的原因是格子不規則,從而想到了用補或割的方法進行計算,其原則就是由不規則經過割補變為規則。

        3、實驗探究,證明結論

        因為勾股定理的出現,使數學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數形結合這一數學思想,讓學生親自動手,互相協作,拿一塊由a2和b2組成的不規則的平面圖形經割補,變為規則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

        4、練兵之際

        這是“總統證法”,此時讓學生自己探索,然后討論。選用“總統證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統證法”,大大增強了學生的自信心和自豪感。

        5、自己動手,拼出弦圖

        讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的 直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經是把課堂全部還給了學生,讓他們 在數學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

        6、總結反思

        通 過這一堂課,我認為數學教學的核心不是知識本身,而是數學的思維方式,而培養這種數學思維方式需要豐富的數學活動。在活動中學生可以用自己創造與體驗的方 法來學習數學,這樣才能真正的掌握數學,真正擁有數學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發興 趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數學課堂轉化為“數學實驗 室”,學生通過自己活動得出結論,使創新精神與實踐能力得到了發展。

        七、設計說明

        1、根據學生的知識結構,我采用的數學流程是:創設情境引入新課——觀察發現類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現了知識的發生、形成和發展的過程,讓學生經歷了觀察——猜想——歸納——驗證的思想和數形結合的思想。

        2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發展也有很大作用。

        勾股定理說課稿 7

        一、教材分析:

        (一)教材的地位與作用

        從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

        從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

        勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

        根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中【情感態度】方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。

        (二)重點與難點

        為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

        二、教學與學法分析

        教學方法

        葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

        學法指導

        為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

        三、教學過程

        我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。

        首先,情境導入,古韻今風

        給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。

        第二步,追溯歷史,解密真相

        勾股定理的探索過程是本節課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

        從上面低起點的問題入手,有利于學生參與探索。學生很容易發現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用"數格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

        突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環節的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的方法,有的學生可能會發現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養學生的類比、遷移以及探索問題的能力。

        使用幾何畫板動態演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

        以上三個環節層層深入步步引導,學生歸納得到命題1,從而培養學生的合情推理能力以及語言表達能力。

        感性認識未必是正確的,推理驗證證實我們的猜想。

        第三步,推陳出新,借古鼎新

        教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創新使用教材,利用拼圖活動解放學生的大腦,讓學生發揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的`時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發現兩種證明方案。

        方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發掘過程,體會數學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養學生的符號意識。

        教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養民族自豪感和愛國主義精神。利用勾股樹動態演示,讓學生欣賞數學的精巧、優美。

        第四步,取其精華,古為今用

        我按照"理解—掌握—運用"的梯度設計了如下三組習題。

        (1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

        第五步,溫故反思,任務后延

        在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

        然后布置作業,分層作業體現了教育面向全體學生的理念。

        勾股定理說課稿 8

        課題:“勾股定理”第一課時

        內容:教材分析、教學過程設計、設計說明

        一、教材分析

        (一)教材所處的地位

        這節課是九年制義務教育課程標準實驗教科書八年級第一章第一節探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

        (二)根據課程標準,本課的教學目標是:

        1、能說出勾股定理的內容。

        2、會初步運用勾股定理進行簡單的計算和實際運用。

        3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。

        4、通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

        (三)本課的教學重點:探索勾股定理

        本課的教學難點:以直角三角形為邊的正方形面積的計算。

        二、教法與學法分析:

        教法分析:針對初二年級學生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分。

        學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。

        三、教學過程設計

        (一)提出問題:

        首先創設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰性,目的是激發學生的探究欲望,教師引導學生將實際問題轉化成數學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發生過程,而且解決問題的過程也是一個“數學化”的過程。

        (二)實驗操作:

        1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發現正方形A,B,C的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

        2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

        3、給出一個邊長為0.5,1.2,1.3,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。

        (三)歸納驗證:

        1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的.結論,盡管學生可能講的不完全正確,但對于培養學生運用數學語言進行抽象、概括的能力是有益的,同時發揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。

        2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養學生嚴謹、科學的學習態度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。

        (四)問題解決:

        讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。

        (五)課堂小結:

        主要通過學生回憶本節課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。

        (六)布置作業:

        課本P6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯系。另外,補充一道開放題。

        四、設計說明

        1、本節課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。

        2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發展也有一定的作用。

        3、關于練習的設計,除兩個實際問題和課本習題以外,我準備設計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關系。

        4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。

        勾股定理說課稿 9

      尊敬的各位評委、各位老師:

        大家好!

        我是來自xx中學的袁x,我今天說課的內容是華師版九年義務教育課程標準實驗教科書《數學》八年級下冊第十四章第一節第一課時《勾股定理》,勾股定理揭示了直角三角形三邊之間的一種美妙關系,將形與數密切聯系起來,在數學的發展和現實世界中有著廣泛的作用。本節是直角三角形相關知識的延續,同時也是學生認識無理數的基礎,充分體現了數學知識承前啟后的緊密相關性、連續性。此外,歷史上勾股定理的發現反映了人類杰出的智慧,其中蘊涵著豐富的科學與人文價值。

        下面我將從教材分析、學情分析、教學方法、教學過程、教學評價等五個方面對本節課的教學設計進行說明。

        一、教材分析

        (一)教材的地位與作用

        勾股定理是數學中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起著重要的作用,在現實世界中也有著廣泛的應用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形取得進一步的認識和理解。

        (二)教學目標

        基于以上分析和數學課程標準的要求,制定了本節課的教學目標。

        1、知識與技能:

        掌握直角三角形三邊之間的數量關系,學會用符號表示邊長。學生在經歷用數格子與割補等辦法探索勾股定理的過程中,體會數形結合的思想,體驗從特殊到一般的邏輯推理過程。

        2、能力目標:

        通過拼圖活動,體驗數學思維的嚴謹性,發展形象思維。并通過分層訓練,使學生學會熟練運用勾股定理進行簡單的計算,在解決實際問題中掌握勾股定理的應用技能。

        3、情感目標:

        通過數學史上對勾股定理的介紹,激發學生熱愛祖國悠久文化的情感,激勵學生奮發學習。使學生從經歷定理探索的過程中,感受數學之美,探究之趣,培養合作意識和探索精神。

        (三)教學重、難點

        重點:

        用面積法探索勾股定理,理解并掌握勾股定理

        難點:

        用拼圖方法證明勾股定理

        二、學情分析

        學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。現在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環境,給他們自己探索、發表自己見解和展示自己才華的機會;更希望教師滿足他們的創造愿望。

        三、教學方法

        本節課采用探究發現式教學,由淺入深,由特殊到一般地提出問題,鼓勵學生采用觀察分析、自主探索、合作交流的學習方法,讓學生經歷數學知識的形成與應用過程。

        四、教學過程

        (一)、創設情境,引入新課

        (師)教師引導學生觀察圖畫,在2002年的國際數學家大會上采用弦圖作為會徽,它為什么有如此大的魅力呢?它蘊涵著怎樣迷人的奧妙呢?這節課我就帶領大家一起探索勾股定理。

        (設計意圖:用生動有趣的圖畫,點燃學生的求知欲,以景激情,以情激思,引領學生進入學習情境。)

        (二)、師生互動,探究新知

        活動1:畢達哥拉斯是古希臘著名的數學家。相傳在2500年以前,他在朋友家做客時,發現朋友家用地磚鋪成的'地面反映了直角三角形的三邊的某種數量關系。

        (1)同學們,請你也來觀察下圖中的地面,看看能發現些什么?

        地面圖18。1—1

        (2)你能找出下圖中正方形S1、S2、S3面積之間的關系嗎?

        圖1圖2

        正方形(面積)

        圖1

        圖2

        S1 4 9S2 4 9S3 8 18

        (3)圖中正方形A、B、C所圍等腰直角三角形三邊之間有什么特殊關系?222

        a+b=c

        活動2:等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“兩直角邊的平方和等于斜邊的平方”呢?

        如右圖所示,每個小方格的面積均為1,以格點為頂點,有一個直角邊分別是3、4的直角三角形。仿照上一活動,我們以這個直角三角形的三邊為邊長向外作正方形。

        (2)想一想,怎樣利用小方格計算正方形S1、S2、S3面積?

        活動3

        得出結論:

        如果直角三角形兩直角邊分別為a,b,斜邊為c,那么222

        a+b=c222a+b=c

        勾股定理:即直角三角形兩直角邊的平方和等于斜邊的平方。

        (師)在中國古代,人們把彎曲成直角的手臂的上半部分稱為"勾",下半部分稱為"股"。我國古代學者把直角三角形較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”。所以我國古代把上面的定理稱為“勾股定理”。

        再請學生看一看,讀一讀:早在三千多年前周朝數學家商高就提出勾三、股四、弦五,并在后來被記載在中國古代著名數學著作《周髀算經》之中,一千多年后西方的畢達哥拉斯證明了此定理。

        我的講課結束,謝謝大家!

        勾股定理說課稿 10

      各位專家領導:

        上午好,今天我說課的課題是《勾股定理》。

        一、教材分析:

        (一)本節內容在全書和章節的地位

        這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

        (二)三維教學目標:

        1、【知識與能力目標】

        (1)理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

        (2)通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

        2、【過程與方法目標】在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

        3、【情感態度與價值觀】通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。

        (三)教學重點、難點:

        【教學重點】勾股定理的證明與運用

        【教學難點】用面積法等方法證明勾股定理

        【難點成因】對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

        【突破措施】:

        (1)創設情景,激發思維:創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;

        (2)自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;

        (3)張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

        二、教法與學法分析

        【教法分析】數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創設情景—動手操作—歸納驗證—問題解決—課堂小結—布置作業”六個方面。

        【學法分析】新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

        三、教學過程設計

        (一)創設情景

        多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

        問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的'兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

        (二)動手操作

        1、課件出示課本P99圖19.2.1:

        觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

        學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現SP+SQ=SR(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

        2、緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2。2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

        3、再問:當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

        (三)歸納驗證

        【歸納】通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。

        【驗證】先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。

        (四)問題解決

        1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

        2、自學課本P101例1,然后完成P102練習。

        (五)課堂小結

        1、小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

        2、教師用多媒體介紹“勾股定理史話”。

        ①《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。

        ②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。

        目的是對學生進行愛國主義教育,激勵學生奮發向上。

        (六)布置作業

        課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

        以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

        勾股定理說課稿 11

      尊敬的各位領導,各位老師:

        大家好!今天我說課的內容是初中八年級數學人教版教材第十八章第一節《勾股定理》(第一課時),下面我分五部分來匯報我這節課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。

        一、教材分析

        (一) 教材地位和作用

        勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數量關系,將幾何圖形與數字聯系起來。它在數學的發展中起過重要的作用,在生產生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節課有著舉足輕重的地位。

        (二)教學目標

        根據新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:

        1、知識與技能方面

        了解勾股定理的文化背景,經歷探索勾股定理的過程,掌握直角三角形三邊之間的數量關系, 并能簡單應用。

        2、過程與方法方面

        經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數學思考過程的條理性,發展數學的說理和簡單的推理的意識,和語言表達的能力,并體會數形結合和特殊到一般的思想方法。

        3、情感態度與價值觀方面

        (1)通過了解勾股定理的歷史,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

        (2) 通過研究一系列富有探 究性的問題,培養學生與他人交流、合作的意識和品質。

        (三)教學重點難點

        教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。

        教學難點:勾股定理的證明。

        二、學情分析

        我們班日常經常使用多媒體輔助教學。經過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環境,給他們自己探索、發表自己見解和表現自己才華的機會;更希望教師滿足他 們的創造愿望。

        三、教法選擇

        根據本節課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發現法為主,并以分析法、討論法相結合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。

        四、學法指導:

        為了充分體現《新課標》的要求,培養學生的觀察分析能力,邏輯思維能力,積累豐富的數學學習經驗,這節課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數學思 想。借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主人。

        五、教學過程

        根據《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節課的教學過程我是這樣設計的:

        (一)創設情境,引入新課

        一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節課的學習中。為了體現數學源于生活,數學是從人的需要中產生的,學習數學的目的'是為了用數學解決實際問題。我設計了以下題目:

        星期日老師帶領全班同學去某山風景區游玩,同學們看到山勢險峻,查看景區示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

        ∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?

        答案是不能的。然后教師指出,通過這節課的學習,問題將迎刃而解。

        設計意圖:以趣味性題目引入。從而設置懸念,激發學生的學習興趣。 教師引導學生把實際問題轉化為數學問題,這其中滲透了一種數學思想,對于學生也是一種挑戰,能激發學生探究的欲望,自然引出下面的環節。

        緊接著出示本節課的學習目標:

        1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

        2、掌握勾股定理的內容,并會簡單應用。

        (二)勾股定理的探索

        1、猜想結論

        (1)探究一:等腰直角三角形三邊關系。

        由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

        在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。

        提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?

        (2、)探究二:一般的直角三角形三邊關系。

        在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

        設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發現過程,他們通過自己觀察、計算所得出的定理,在心理產生自豪感,從而增強學生的學習數學的自信心。

        2、證明猜想

        目前世界上證明該勾股定理的方法有很多種,而我國古代數學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

        設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。

        3、簡要介紹勾股定理命名的由來

        我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數學著作《周髀算經》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發現了勾股定理, 但他比商高晚出生五百多年。

        設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發向上。

        (三)勾股定理的應用

        1、利用勾股定理,解決引入中的問題。體會數學在實際生活中的應用。

        2、教學例1:課本66頁探究1

        師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內通過.

        木板的寬2、2米大于2米,所以豎著不能從門框內通過.

        因為對角線AC的長度最大,所以只能試試斜著 能否通過.

        從而將實際問題轉化為數學問題.

        提示:

        (1)在圖中構造出一個直角三角形。(連接AC)

        (2)知道直角△ABC的那條邊?

        (3)知道直角三角形兩條邊長求第三邊用什么方法呢?

        設計意圖:此題是將實際為題轉化為數學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。

        (四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。

        設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。

        (五)課堂小結

        對學生提問:"通過這節課的學習有什么收獲?"

        學生同桌間暢談自己的學習感受和體會,并請個別學生發言。

        設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養了學生口頭表達能力。

        (六)達標訓練與反饋

        設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現分層教學。

        以上內容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!

        勾股定理說課稿 12

      尊敬的各位評委、老師,大家好!

        我說課的題目是華師版八年級上冊第十四章第一節第一課時《勾股定理》。

        教材分析:

        如果說數學思想是解決數學問題的一首經典老歌,那么本節課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中最為活躍的音符!本節的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數學幾個重要定理之一。它揭示了直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。

        勾股定理的發現、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節在教材中起著承前啟后的橋梁作用。

        新課標下的數學教學不僅是知識的教學,更應注重能力的培養及情感的教育,因此,根據本節在教學中的地位和作用,結合初二學生不愛表現、好靜不好動的特點,我確定本節教學目標如下:

        1、探索并利用拼圖證明勾股定理。

        2、利用勾股定理解決簡單的數學問題。

        3、感受數學文化,體會解決問題方法的多樣性和數形結合的思想。

        本著課標的要求,在吃透教材的基礎上,我確定本節的教學重點、難點、關鍵如下:

        勾股定理的證明和簡單應用是本節的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。

        為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:

        教法分析:

        新課程標準強調要從學生已有的經驗出發,最大限度的激發學生學習積極性,新課程下的數學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數學的過程,激發學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發現法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發展打下堅實的基礎。為了增大課堂容量、給學生創設高效的數學課堂,給學生提供足夠從事數學活動的時間,以導學案的形式、運用多媒體輔助教學。

        學法分析

        學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽嘗試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養學生的邏輯思維能力和語言表達能力。

        為了充分調動學生的學習積極性,創設優化高效的數學課堂,我以導學案的方式循序見進的設計教學流程。

        以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環節來進行教學

        1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。

        2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。

        3、勾股定理的應用:以課堂練習、學生個性補充和老師適當的個性化追加的形式實現對定理的靈活應用。

        4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現對本節內容的鞏固與升華。

        說創新點:

        為了給學生營造一個和諧、民主、平等而高效的數學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當的起點和方法,充分發揮學生的主體地位與教師主導作用相統一的原則。教學中注重學生的動手操作能力的培養,化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。

        教學中我注重人文環境的創設,使數學課堂充滿親切、民主的氣氛,例如整節課我以學生的.操作、展示、講解、個性補充為主,拉近了數學與學生的距離,激發了學生的學習興趣;為了使不同的學生得到不同的發展,人人學有價值的數學,在教學中我創造性的使用教材,在不改變例題的本意為前提,創設身邊暖房工程為情境,體現數學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現數學的變化美。

        以學生個性補充的形式促進課堂新的生成,最大限度的培養學生創新思維,使不同的人在數學上有不同的發展。本節課既做到了課程的開放,為充分發揮學生聰明智慧和創造性的思維提供了空間,又創設了具有獨特教學風格的作文式數學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數學文化的薰陶和數學思想的滲透,注重美育、德育與教育的三統一,如小結時由“勾股樹”到“智慧樹”的希望寄語。

        勾股定理說課稿 13

        一、教材分析

        本節課是九年制義務教育課程標準實驗教科書(蘇科版)八年級上冊第二章第一節“勾股定理”的第一課時.在本節課以前,學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數式運算規律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數學思維能力得以充分發揮和發展。

        在探求勾股定理的過程中,蘊涵了豐富的數學思想。把三角形有一個直角“形”的特點轉化為三邊之間的“數”的關系,是數形結合的典范;把探求邊的關系轉化為探求面積的關系,將邊不在格線上的圖形轉化為可計算的格點圖形,是轉化思想的體現;先探求特殊的直角三角形的三邊關系,再猜測一般直角三角形的三邊關系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節課,要創設問題串,提供學生活動的方案,讓學生在活動中思考,在思考中創新,認識和理解勾股定理,并能利用勾股定理解決一些簡單的有關直角三角形的計算問題.

        二、教學目標

        1、讓學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。

        2、讓學生經歷拼圖實驗、計算面積的過程,在過程中養成獨立思考、合作交流的學習習慣;讓各類型的學生在這些過程中發揮自己特長,通過解決問題增強自信心,激發學習數學的興趣;通過老師的介紹,感受勾股定理的文化價值.

        3、能說出勾股定理,并能用勾股定理解決簡單問題.

        三、教學重點

        勾股定理的探索過程.

        四、教學難點

        將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.

        五、教學方法與教學手段

        采用探究發現式教學,提供適當的問題情境.給學生自主探究交流的空間,引導學生有目的地探索.

        六、教學過程

        (一)創設情境 提出問題

        1.同學們,我們已經學過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?

        2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

        3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節課就讓我們一起來探討這個問題.板書:直角三角形三邊數量關系.

        (這是對三角形三邊的不等關系和三角形全等的判定的回顧,從學生從原有的認知水平出發,揭示這節課產生的根源,符合學生的認知心理,也自然地引出本節課的目標.讓學生體會到當一般性的問題不好解決時,可以先將一般問題轉化為特殊問題來研究.)

        (二)實踐探索 猜想歸納

        1、用什么方法來探求板書:直角三角形三邊數量關系呢?

        回憶我們曾經利用圖形面積探索過數學公式,大家還記得在哪用過嗎?

        (學生討論)

        課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.

        今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數量關系.

        (從學生已有的學習經驗出發,將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

        2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?

        (同位利用教師提供的學案,合作拼圖。)

        通過拼圖,你有什么發現?

        (如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發了學生的猜想,增加了研究的趣味性,鍛煉了學生的空間思維能力和動手能力.體現了活動——數學的思想.)

        3、拼圖活動引發我們的靈感;運算推演

        證實我們的猜想.為了計算面積方便,我們可

        將這幅圖形放在方格紙中.如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4).

        (學生容易回答SP=9,SQ=16。)

        你是如何得到的?

        (可以數圖形中的小方格的個數,也可以通

        過正方形面積公式計算得到。)

        如何計算 ?

        (的求法是這節課的難點,這時可讓學生先在學案上獨立分析,再通過小組交流,最后由小組代表到臺前展示.學生可能提出割(圖5)、補(圖6)、平移(圖7)、旋轉(圖8)等方法,旋轉這種方法只適用于斜邊為整數的情況,沒有一般性,若有學生提出,應提醒學生.)

        4、肯定學生的研究成果,進而讓學生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發?

        (把圖形進行“割”和“補”,即把不能利用網格線直接計算面積的圖形轉化成可以利用網格線直接計算面積的圖形,讓學生體會將較難的問題轉化為簡單問題的思想)

        5、再給出直角邊為5和3的直角三角形(圖9),讓學生計算分別以三邊作為邊所作的正方形面積.

        (這是轉化思想,也是“割補”方法的再一次應用.在

        前面的探求過程中有的'學生沒能自己做出來,提供再一次的機會,可讓全體學生再次感受轉化思想,體驗成功的樂趣.)

        通過計算,你發現這三個正方形面積間有什么關系嗎?

        (SP+SQ=SR,要給學生留有思考時間.)

        6、通過以上的實驗、操作、計算,我們發現以直角三角形的各邊為邊所作的正方形的面積之間有什么關系呢?同學們還有什么疑問嗎?

        (以直角邊為邊所作的正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學生提出我們討論的都是邊長為整數的直角三角形情況,那么邊長是小數時,結論是否成立?教師就演示以下實驗。)

        利用方格紙,我們方便計算直角邊為整數的情況,若直角邊為小數時,所得到的正方形面積之間也有如上關系嗎?

        將網格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.

        (利用幾何畫板的高效性、動態性反映這一過程,讓學生體會到更多的特殊情形,從而為歸納提供基礎,這樣歸納的結論更具有一般性,學生的印象也更深刻.)

        7、我們這節課是探索直角三角形三邊數量關系.至此,你對直角三角形三邊的數量關系有什么發現?

        (面積是邊長的平方,面積間的等量關系轉化為邊長間的等量關系,即直角三角形三邊的等量關系:兩直角邊的平方和等于下邊的平方.)

        (這一問題的結論是本節課的點睛之筆,應充分讓學生總結,交流,表達.)

        8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.一段緊張的探索過程之后,播放一段有關勾股歷史的錄音.

        (這樣既活躍了課堂氣氛,又展現了勾股歷史,激發學生熱愛祖國悠久歷史文化,

        激勵學生發奮學習的情感.)

        9、閱讀課本,提出問題

        (讓學生有將知識內化為自己的知識結構的過程,教師巡視,對有困難的同學給予幫助,促進全班同學共同進步,體現面向全體的教學原則.)

        (三)課堂練習 鞏固新知

        1.完成課本第45頁練習第1題、第2題.

        (1)求下列直角三角形中未知邊的長:

        (2)求下列圖中未知數x、y、z的值:

        (充分利用課本,在前面閱讀的基礎上做課本上的練習題。提問學生口答,老師再規范板書一題.通過對勾股定理的基本應用,讓學生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

        2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學生沿對角線踏出了一條斜“路”,這種情況在生活中時有發生。請問同學們:

        (1)這幾位同學為什么不走正路,走斜“路”?

        (2)他們知道走斜“路”比正路少走幾步嗎?

        (3)他們這樣這樣做,值得嗎?

        (這是一道貼近學生生活的實例,在勾股定理的運用中滲透了德育教育.)

        (四)課堂小結 布置作業

        1、通過本節課的學習,大家有什么收獲?有什么疑問?你認為還有什么要繼續探索的問題?

        (學生總結本堂課的收獲,可以是知識、應用、數學思想方法以及獲取新知的途徑等.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生的綜合表達能力.如果學生沒有提出繼續要探討的問題,教師可以引導學生思考:直角三角形的三邊有特殊的等量關系,一般三角形三邊是否也存在一種等量關系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內容,首尾呼應,激發學生不滿足于現狀,有不斷提出新問題的欲望,即培養學生的創新意識.)

        2、作業

        (1)課本第471頁第2題,并完成第45頁的實驗。

        (2)在以下網頁中你可以找到有關勾股定理的豐富的內容,請你結合本節課的學習

        和從網上或書本上自學到的知識寫一篇有關勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

        n

        (作業的多元化、多層次,有利于全體學生的全面素質發展。)教育大全

        七、教學設計說明:

        本節課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.

        本節課從學生的原有認知出發提出問題,揭示這節課產生的根源,符合學生的認知心理.教科書設計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎上,為了更好地展示這一探索過程,本節課先讓學生回顧利用圖形面積探求數學公式的經歷,以此確定研究方法.繼而設計了剪紙活動,從中引發學生的猜想,再利用幾何畫板這一工具帶領學生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學生充分經歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點,應讓學生充分地思考、討論、總結方法.通過對特殊到一般的考查,讓學生主動建立由數到形,由形到數的聯想,從中使學生不斷積累數學活動的經驗,歸納出直角三角形三邊數量之間的關系.在教學中鼓勵學生采用觀察分析,自主探索,合作交流的學習方法,培養學生主動的動手,動腦,動口的學習習慣和能力,使學生真正成為學習的主人.

        除了探究出勾股定理的內容以外,本節課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發學生愛國熱情,培養學生的民族自豪感和探索創新的精神.

        練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.題目的設計中滲透了德育教育,拓展了學生的空間思維,使得一節幾何課全面地考查了學生的各方面思維.

        讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力.

        作業為了達到提高鞏固的目的,提供給學生網址是為了拓展學生的視野,以期學生能主動地探求對勾股定理更深入的認識.

      【勾股定理說課稿】相關文章:

      勾股定理說課稿08-05

      《勾股定理》的說課稿09-01

      勾股定理的說課稿11-11

      勾股定理說課稿09-01

      《勾股定理》說課稿08-29

      《勾股定理》說課稿11-02

      《勾股定理》優秀說課稿08-12

      《勾股定理》說課稿優秀08-26

      勾股定理說課稿優秀08-21

      《勾股定理》說課稿(精選11篇)07-12

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        亚洲国产va午夜在线电影 | 亚洲日韩精品综合中文字幕 | 中文高清亚洲电影 | 一本一本久久a久久综合 | 亚洲少妇AⅤ在线电 | 色妺妺免费AV在线 |