<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      中考數學知識點總結

      時間:2022-11-26 09:51:17 知識點總結 我要投稿

      中考數學知識點總結(集錦15篇)

        總結就是把一個時間段取得的成績、存在的問題及得到的經驗和教訓進行一次全面系統的總結的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質的理性認識上來,快快來寫一份總結吧。那么你真的懂得怎么寫總結嗎?以下是小編整理的中考數學知識點總結,僅供參考,大家一起來看看吧。

      中考數學知識點總結(集錦15篇)

      中考數學知識點總結1

        第一章實數

        考點一、實數的概念及分類(3分)

        1、實數的分類

        正有理數

        有理數零有限小數和無限循環小數實數負有理數正無理數

        無理數無限不循環小數負無理數

        整數包括正整數、零、負整數。

        正整數又叫自然數。

        正整數、零、負整數、正分數、負分數統稱為有理數。

        2、無理數

        在理解無理數時,要抓住“無限不循環”這一時之,歸納起來有四類:

        (1)開方開不盡的數,如7,32等;

        (2)有特定意義的數,如圓周率π,或化簡后含有π的數,如

        (3)有特定結構的數,如0.1010010001等;

        (4)某些三角函數,如sin60o等

        考點二、實數的倒數、相反數和絕對值(3分)

        1、相反數

        實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=b,反之亦成立。

        2、絕對值

        一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大于零,負數小于零,正數大于一切負數,兩個負數,絕對值大的反而小。

        3、倒數

        如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。

        考點三、平方根、算數平方根和立方根(310分)

        1、平方根

        如果一個數的平方等于a,那么這個數就叫做a的平方根(或二次方跟)。一個數有兩個平方根,他們互為相反數;零的平方根是零;負數沒有平方根。正數a的平方根記做“。a”

        π+8等;

        2、算術平方根

        正數a的正的平方根叫做a的算術平方根,記作“a”。正數和零的算術平方根都只有一個,零的算術平方根是零。a(a0)a0

        a2a;注意a的雙重非負性:

        -a(a考點六、實數的運算(做題的基礎,分值相當大)

        1、加法交換律abba

        2、加法結合律(ab)ca(bc)

        3、乘法交換律abba

        4、乘法結合律(ab)ca(bc)

        5、乘法對加法的分配律a(bc)abac

        6、實數混合運算時,對于運算順序有什么規定?

        實數混合運算時,將運算分為三級,加減為一級運算,乘除為二能為運算,乘方為三級運算。同級運算時,從左到右依次進行;不是同級的混合運算,先算乘方,再算乘除,而后才算加減;運算中如有括號時,先做括號內的運算,按小括號、中括號、大括號的順序進行。

        7、有理數除法運算法則就什么?

        兩有理數除法運算法則可用兩種方式來表述:第一,除以一個不等于零的數,等于乘以這個數的倒數;第二,兩數相除,同號得正,異號得負,并把絕對值相除。零除以任何一個不為零的數,商都是零。

        8、什么叫有理數的乘方?冪?底數?指數?

        相同因數相乘積的運算叫乘方,乘方的結果叫冪,相同因數的個數叫指數,這個因數叫底數。記作:an

        9、有理數乘方運算的法則是什么?

        負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數。零的任何正整數冪都是零。

        10、加括號和去括號時各項的符號的變化規律是什么?

        去(加)括號時如果括號外的因數是正數,去(加)括號后式子各項的符號與原括號內的式子相應各項的符號相同;括號外的因數是負數去(加)括號后式子各項的符號與原括號內式子相應各項的符號相反。

        平行線與相交線

        知識要點

        一.余角、補角、對頂角

        1,余角:如果兩個角的和是直角,那么稱這兩個角互為余角.

        2,補角:如果兩個角的和是平角,那么稱這兩個角互為補角.

        3,對頂角:如果兩個角有公共頂點,并且它們的兩邊互為反向延長線,這樣的兩個角叫做對頂角.

        4,互為余角的有關性質:

        ①∠1+∠2=90°,則∠1、∠2互余;反過來,若∠1,∠2互余,

        則∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,則∠2=∠3.

        5,互為補角的有關性質:①若∠A+∠B=180°,則∠A、∠B互補;反過來,若∠A、∠B互補,則∠A+∠B=180°.

        ②同角或等角的補角相等.如果∠A+∠C=180°,∠A+∠B=180°,則∠B=∠C.

        6,對頂角的性質:對頂角相等.

        二.同位角、內錯角、同旁內角的認識及平行線的性質

        7,同一平面內兩條直線的位置關系是:相交或平行.

        8,“三線八角”的識別:

        三線八角指的是兩條直線被第三條直線所截而成的八個角.

        正確認識這八個角要抓住:同位角位置相同,即“同旁”和“同規”;內錯角要抓住“內部,兩旁”;同旁內角要抓住“內部、同旁”.三.平行線的性質與判定

        9,平行線的定義:在同一平面內,不相交的兩條直線是平行線.

        10,平行線的性質:兩條平行線被第三條直線所截,同位角相等,內錯角相等,同旁內角互補.

        11,過直線外一點有且只有一條直線和已知直線平行.

        12,兩條平行線之間的距離是指在一條直線上任意找一點向另一條直線作垂線,垂線段的長度就是兩條平行線之間的距離.

        13,如果兩條直線都與第三條直線平行,那么這兩條直線互相平行.

        14,平行線的判定:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;如果內錯角相等.那么這兩條直線平行;如果同旁內角互補,那么這兩條直線平行.這三個條件都是由角的數量關系(相等或互補)來確定直線的位置關系(平行)的,因此能否找到兩直線平行的條件,關鍵是能否正確地找到或識別出同位角,內錯角或同旁內角.

        15,常見的幾種兩條直線平行的結論:

        (1)兩條平行線被第三條直線所截,一組同位角的角平分線平行;

        (2)兩條平行線被第三條直線所截,一組內錯角的角平分線互相平行.

        四.尺規作圖

        16,只用沒有刻度的直尺和圓規的作圖的方法稱為尺規作圖.用尺規可以作一條線段等于已知線段,也可以作一個角等于已知角.利用這兩種兩種基本作圖可以作出兩條線段的和或差,也可以作出兩個角的和或差.

      中考數學知識點總結2

        圓的初步認識

        一、圓及圓的相關量的定義(28個)

        1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

        2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。

        3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

        4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。

        5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

        6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

        7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

        二、有關圓的字母表示方法(7個)

        圓--⊙ 半徑r 弧--⌒ 直徑d

        扇形弧長/圓錐母線l 周長C 面積S三、有關圓的基本性質與定理(27個)

        1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

        P在⊙O外,POP在⊙O上,PO=r;P在⊙O內,PO

        2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

        3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

        4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

        5.一條弧所對的圓周角等于它所對的圓心角的一半。

        6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

        7.不在同一直線上的3個點確定一個圓。

        8.一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形3邊距離相等。

        9.直線AB與圓O的位置關系(設OPAB于P,則PO是AB到圓心的距離):

        AB與⊙O相離,POAB與⊙O相切,PO=r;AB與⊙O相交,PO

        10.圓的切線垂直于過切點的直徑;經過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

        11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且Rr,圓心距為P):

        外離P外切P=R+r;相交R-r

        三、有關圓的計算公式

        1.圓的周長C=2d 2.圓的面積S=s=3.扇形弧長l=nr/180

        4.扇形面積S=n/360=rl/2 5.圓錐側面積S=rl

        四、圓的方程

        1.圓的標準方程

        在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

        (x-a)^2+(y-b)^2=r^2

        2.圓的一般方程

        把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

        x^2+y^2+Dx+Ey+F=0

        和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

        相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

        五、圓與直線的位置關系判斷

        鏈接:圓與直線的位置關系(一.5)

        平面內,直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是

        討論如下2種情況:

        (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

        代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.

        利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

        如果b^2-4ac0,則圓與直線有2交點,即圓與直線相交

        如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

        如果b^2-4ac0,則圓與直線有0交點,即圓與直線相離

        (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

        將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

        令y=b,求出此時的兩個x值x1,x2,并且我們規定x1

        當x=-C/Ax2時,直線與圓相離

        當x1

        當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

        圓的定理:

        1不在同一直線上的三點確定一個圓。

        2垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

        推論1

        ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

        ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

        ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

        推論2

        1圓的兩條平行弦所夾的弧相等

        3圓是以圓心為對稱中心的中心對稱圖形

        4圓是定點的距離等于定長的點的集合

        5圓的內部可以看作是圓心的距離小于半徑的點的集合

        6圓的外部可以看作是圓心的距離大于半徑的點的集合

        希望這篇20xx中考數學知識點匯總,可以幫助更好的迎接即將到來的考試!

      中考數學知識點總結3

        1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。

        2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等于1.

        3.多項式:幾個單項式的和叫多項式。

        4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

        5.常數項:不含字母的項叫做常數項。

        6.多項式的排列

        (1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

        (2)把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

        7.多項式的排列時注意:

        (1)由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

        (2)有兩個或兩個以上字母的多項式,排列時,要注意:

        a.先確認按照哪個字母的指數來排列。

        b.確定按這個字母向里排列,還是向外排列。

        (3)整式:

        單項式和多項式統稱為整式。

        8.多項式的加法:

        多項式的加法,是指多項式的同類項的系數相加(即合并同類項)。

        9.同類項:所含字母相同,并且相同字母的次數也分別相同的項叫做同類項。

        10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數相加,所得的結果作為系數,字母與字母的指數不變。

        11.掌握同類項的概念時注意:

        (1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:

        ①所含字母相同。

        ②相同字母的次數也相同。

        (2)同類項與系數無關,與字母排列的順序也無關。

        (3)所有常數項都是同類項。

        12.合并同類項步驟:

        (1)準確的找出同類項;

        (2)逆用分配律,把同類項的系數加在一起(用小括號),字母和字母的指數不變;

        (3)寫出合并后的結果。

        13.在掌握合并同類項時注意:

        (1)如果兩個同類項的系數互為相反數,合并同類項后,結果為0;

        (2)不要漏掉不能合并的項;

        (3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

        14.整式的拓展

        整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的結構特征以及公式中的字母的廣泛含義,學生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關鍵,這是因為,一般多項式的乘除都要“轉化”為單項式的乘除。

        整式四則運算的主要題型有:

        (1)單項式的四則運算

        此類題目多以選擇題和應用題的形式出現,其特點是考查單項式的四則運算。

        (2)單項式與多項式的運算

        

      中考數學知識點總結4

        在日常的練習、作業和考試中,學生都會或多或少地出現一些做錯的題目,而對待錯題的態度不同,學習的效果就會有很大的差別。丁老師就來告訴同學們怎么來用好我們的錯題吧!

        錯題主要涉及錯題收集和存檔、錯題改正、錯題分享、錯題應用四個環節。

        一、錯題收集和存檔:

        這里的錯題,不僅指各級各類數學考試中的錯題,還包括平時數學作業中做錯的題目。最好把錯題都摘錄到一個固定的本子上面(錯題本),便于自己以后查閱。即使是曾經錯了而現在理解了的題目也最好登記在冊,它們形成獨具個性的學習軌跡,有利于知識的理解、識記、儲存和提取。

        在進行錯題收集的`時候,一定要注意分類。分類的方法很多,可以按照錯題原因分類、按照錯題中所隱含知識的章節進行分類,甚至還可以按照題型進行分類。這樣整理好的錯題是系統的,到最后復習時就有比較強的針對性。

        二、錯題改正:

        收集錯題以后,接下來就是改錯了,這是錯題管理的目的。學生要爭取自己獨立對錯題進行分析,然后找出正確的解答,并訂正。在自己獨立思考的基礎上,如果還是得不到答案,這時候就需要積極地求助他人了,可以是學得比較好的同學,也可以是老師。讓他們幫自己分析原因,在他們的啟發引導下進行改正。找到出錯的癥結所在,最好能在錯題后面附上自己的心得體會,可以依次回答以下問題:

        這道題目錯在什么地方?

        這道題目為什么做錯了?(錯在計算、化簡?錯在概念理解?錯在理解題意?錯在邏輯關系?錯在以偏概全?錯在粗心大意?錯在思維品質?錯在類比?等等。)

        這道題目正確的做法是什么?

        這道題目有沒有其它解法?哪種方法更好?

        錯題改正這個過程其實就是學生再學習、再認識、再提高的過程,它使學生對易出錯的知識的理解更全面透徹,掌握更加牢固,同時也提高了學生自主學習的能力。一般意義上,任何學習都需要反思,錯題改正是反思的具體途徑之一。

        整理錯題并不是為了做得好看,是為了實用,對自己的學習有幫助。因而沒有固定的標準,關鍵要符合學生自己的習慣。但是學生一定要抽時間翻閱自己辛勤勞動的結晶,對其中的錯題進行溫習,這樣做有時候可以收到意想不到的效果,會有新的體會。其實整理好的錯題集就相當于是以前做過的大量習題中的精華薈萃(這要建立在學生認真整理的基礎上),是最適合學生個人的學習資料,比任何一本參考書、習題集都有用,有價值。

        三、錯題分享:

        在現行的學習體制下,學生之間的競爭意識很強,但是主動交流分享意識非常薄弱。其實同學就是一個巨大的學習資源庫,只要每個學生都愿意敞開心扉,真誠地交流,相互扶持,相互幫助和鼓勵,學生就可以從同學身上學到很多東西。正所謂“你有一種思想,我有一種思想,交流之后我們就同時擁有了兩種思想”,學生之間的錯題集也可以相互交流。這是因為每個學生出錯的原因各不相同,所以每個人建立的錯題集也不同,通過相互交流可以從別人的錯誤中汲取教訓,拓展自己的視野,得到啟發,以警示自己不犯同樣錯誤。不同的人從相同的題目中得到的是不同的體會,通過交流大家就可以領略到知識的不同側面,從而對知識掌握得更加牢固。在交流的氛圍中,學生改變了學習方式,增強了學習數學的積極性。

        四、錯題應用:

        將錯題收集在一起并改正,還不能完全說明學生對這一知識點的漏洞就補好了。最好的狀況是對于每一個錯題,學生自己還必須查找資料,找出與之相同或相關的題型,進行練習解答。如果沒有困難,則說明學生對這一知識點可能已經掌握。此時,學生可以嘗試著進行更高難度的事情:錯題改編。將題目中的條件和結論換一下,還成立嗎?把條件減弱或者把結論加強,命題還成立嗎?或者嘗試著編一道類似的題目,還能做嗎?經歷了這么一個思維洗禮,學生對知識的理解會更深刻,對方法的把握會更透徹,不管條件怎么變,他們基本上都可以應付自如了。一般情況下,學生在學校可能沒有這么充裕的時間來做這樣的事情,但是學生之間相互協助,每人找一個類型的題目,或者每人提出一個想法,全班合起來就基本找全了所有的題型,改編了很多道類似的題目。

        錯題管理有助于學生的數學學習。但是,錯題管理并不是學習的目的,而是幫助學生進行有效學習的一種手段。制作錯題集更不是任務,不一定要做得精致、全面,它只是一種訓練思維的載體。最關鍵的是,學生和老師不能輕易放過錯題,徹底弄清楚錯題所反映的問題,學以致用。在反思學習的過程中完善自己的知識結構,提升解決問題的能力,實現有效學習和有效教學的終極目標。

      中考數學知識點總結5

        中考數學知識點:分式混合運算法則

        分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡.

        分式混合運算法則:

        分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

        乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

        加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

        變號必須兩處,結果要求最簡.

        中考數學二次根式的加減法知識點總結

        二次根式的加減法

        知識點1:同類二次根式

        (Ⅰ)幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。

        (Ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數及根指數有關,而與根號外的因式無關。

        知識點2:合并同類二次根式的方法

        合并同類二次根式的理論依據是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數相加,根指數和被開方數都不變,不是同類二次根式的不能合并。

        知識點3:二次根式的加減法則

        二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數相加,根式不變。

        知識點4:二次根式的混合運算方法和順序

        運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內的。

        知識點5:二次根式的加減法則與乘除法則的區別

        乘除法中,系數相乘,被開方數相乘,與兩根式是否是同類根式無關,加減法中,系數相加,被開方數不變而且兩根式須是同類最簡根式。

        中考數學知識點:直角三角形

        ★重點★解直角三角形

        ☆內容提要☆

        一、三角函數

        1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.

        2.特殊角的三角函數值:

        0°30°45°60°90°

        sinα

        cosα

        tgα/

        ctgα/

        3.互余兩角的三角函數關系:sin(90°-α)=cosα;…

        4.三角函數值隨角度變化的關系

        5.查三角函數表

        二、解直角三角形

        1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

        2.依據:①邊的關系:

        ②角的關系:A+B=90°

        ③邊角關系:三角函數的定義。

        注意:盡量避免使用中間數據和除法。

        三、對實際問題的處理

        1.俯、仰角:2.方位角、象限角:3.坡度:

        4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

      中考數學知識點總結6

        1.如果把解題比做打仗,那么解題者的“兵器”就是數學基礎知識,“兵力”就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是“兵法”。

        2.數學家存在的主要理由就是解決問題。因此,數學的真正的組成部分是問題和解答。“問題是數學的心臟”。

        3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對于學生而言,問題有三個特征:

        (1)接受性:學生愿意解決并且具有解決它的知識基礎和能力基礎。

        (2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。

        (3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。

        4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對于教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。

        5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:

        (1)問題解決是心理活動。面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。

        (2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。

        (3)問題解決是一個學習目的。“學習數學的主要目的在于問題解決”。因而,學習怎樣解決問題就成為學習數學的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數學的具體內容。

        (4)問題解決是一種生存能力。重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學習生存的本領。

        6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的觀點解釋現成的例子。其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。第三個表現是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區里,“解題而不立法、作答而不立論”。

        7.人的思維依賴于必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。豐富的知識并加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。

        8.熟練掌握數學基礎知識的體系。對于中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。還應掌握中學數學競賽涉及的基礎理論。深刻理解數學概念、準確掌握數學定理、公式和法則。熟悉基本規則和常用的方法,不斷積累數學技巧。

        9.數學的本質活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現“相容”和“不容”的兩種可能。出現“相容”時,產生新結果,且被原概念吸收,并發展成新概念;當出現“不容”時,則產生了所謂的問題。這時,思維出現迂回,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。至此,也產生新的結果,也被原思維吸收。這就是一個思維活動的全過程。

        10.解題能力,表現于發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:

        (1)掌握解題的科學程序;

        (2)掌握數學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;

        (3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調動精明的解題技巧;

        (4)具有敏銳的直覺。應該明白,我們的數學解題活動是在縱橫交錯的數學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,并非對每一個數學細節都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時間內朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數學對象的本質領悟:

        11.解題具有實踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學會”。

        12.所謂解題經驗,就是某些數學知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經驗所獲得的有序組合,就好像建筑上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。

        13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學生解題是一種意志教育。當學生求解那些對他來說并不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現后如何全力以赴,直撲問題的核心或主干;當一旦突破關卡,如何去占領問題的至高點,并冷靜地府視全局,從而得到問題的完善解決。如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那么他的數學解題訓練就在最重要的地方失敗了。

        14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產生誤導。這樣的教師越高明,學生越自卑。

      中考數學知識點總結7

        圓的定理:

        1不在同一直線上的三點確定一個圓。

        2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

        推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

        ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

        ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

        推論2圓的兩條平行弦所夾的弧相等

        3圓是以圓心為對稱中心的中心對稱圖形

        4圓是定點的距離等于定長的點的集合

        5圓的內部可以看作是圓心的距離小于半徑的點的集合

        6圓的外部可以看作是圓心的距離大于半徑的點的集合

        7同圓或等圓的半徑相等

        8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

        9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

        10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

        中考數學知識點復習口訣

        有理數的加法運算

        同號相加一邊倒;異號相加“大”減“小”,

        符號跟著大的跑;絕對值相等“零”正好。

        合并同類項

        合并同類項,法則不能忘,只求系數和,字母、指數不變樣。

        去、添括號法則

        去括號、添括號,關鍵看符號,

        括號前面是正號,去、添括號不變號,

        括號前面是負號,去、添括號都變號。

        一元一次方程

        已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

        平方差公式

        平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

        完全平方公式

        完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;

        首±尾括號帶平方,尾項符號隨中央。

        因式分解

        一提(公因式)二套(公式)三分組,細看幾項不離譜,

        兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

        四項仔細看清楚,若有三個平方數(項),

        就用一三來分組,否則二二去分組,

        五項、六項更多項,二三、三三試分組,

        以上若都行不通,拆項、添項看清楚。

        單項式運算

        加、減、乘、除、乘(開)方,三級運算分得清,

        系數進行同級(運)算,指數運算降級(進)行。

        一元一次不等式解題步驟

        去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,

        兩邊除(以)負數時,不等號改向別忘了。

        一元一次不等式組的解集

        大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。

        一元二次不等式、一元一次絕對值不等式的解集

        大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

        分式混合運算法則

        分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

        乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

        加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

        變號必須兩處,結果要求最簡。

        中考數學知識點歸納:平面直角坐標系

        平面直角坐標系

        1、平面直角坐標系

        在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。

        其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

        為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

        注意:x軸和y軸上的點,不屬于任何象限。

        2、點的坐標的概念

        點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

      中考數學知識點總結8

        一、三角形的有關概念

        1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。

        三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩定性。

        2.三角形中的三條重要線段:角平分線、中線、高

        (1)角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

        (2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

        (3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

        說明:①三角形的角平分線、中線、高都是線段;②三角形的角平分線、中線都在三角形內部且都交于一點;三角形的高可能在三角形的內部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交于一點。

        二、等腰三角形的性質和判定

        (1)性質

        1.等腰三角形的兩個底角相等(簡寫成"等邊對等角")。

        2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成"等腰三角形的三線合一")。

        3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。

        4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。

        5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。

        6.等腰三角形底邊上任意一點到兩腰距離之和等于一腰上的高(需用等面積法證明)。

        7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。

        (2)判定

        在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。

        在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。

        三、直角三角形和勾股定理

        有一個角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。

        勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

        勾股數一定是正整數,常見勾股數:3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。

        方法總結:

        當不明確直角三角形的斜邊長,應把已知最長邊分為直角邊和斜邊兩種情況討論。無理數在數軸上的表示和線段長表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設未知量)

        如果三角形的三邊長a,b,c有關系a2+b2=c2,那么這個三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設為c)。

        四、初中三角形中線定理

        中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關系。

        定理內容:三角形一條中線兩側所對邊平方和等于底邊的一半平方與該邊中線平方和的2倍。

        中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內部,并交于一點。

        由定義可知,三角形的中線是一條線段。

        由于三角形有三條邊,所以一個三角形有三條中線。

        且三條中線交于一點。這點稱為三角形的重心。

        每條三角形中線分得的兩個三角形面積相等。

        五、直角三角形的判定

        判定1:有一個角為90°的三角形是直角三角形。

        判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。

        判定3:若一個三角形30°內角所對的邊是某一邊的一半,那么這個三角形是以這條長邊為斜邊的直角三角形。

        判定4:兩個銳角互余的三角形是直角三角形。

        判定5:證明直角三角形全等時可以利用HL,兩個三角形的斜邊長對應相等,以及一個直角邊對應相等,則兩直角三角形全等。[定理:斜邊和一條直角對應相等的兩個直角三角形全等。簡稱為HL]

        判定6:若兩直線相交且它們的斜率之積互為負倒數,則這兩直線垂直。

        判定7:在一個三角形中若它一邊上的中線等于這條中線所在邊的一半,那么這個三角形為直角三角形。

        六、勾股定理的逆定理

        如果三角形三邊長a,b,c滿足,那么這個三角形是直角三角形,其中c為斜邊。

        ①勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數轉化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;若時,以a,b,c為三邊的三角形是鈍角三角形;若時,以a,b,c為三邊的三角形是銳角三角形;

        ②定理中a,b,c及只是一種表現形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.

        ③勾股定理的逆定理在用問題描述時,不能說成:當斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形。

        七、三角形定理公式

        三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。

        三角形的內角和定理:三角形的三個內角的和等于180度。

        三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和。

        三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角。

        三角形的三條角平分線交于一點(內心)。

        三角形的三邊的垂直平分線交于一點(外心)。

        三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半。

      中考數學知識點總結9

        1. 因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.

        2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

        3.公因式的確定:系數的最大公約數?相同因式的最低次冪.

        注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

        4.因式分解的公式:

        (1)平方差公式: a2-b2=(a+ b)(a- b);

        (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

        5.因式分解的注意事項:

        (1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;

        (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

        (3)因式分解的最后結果要求分解到每一個因式都不能分解為止;

        (4)因式分解的最后結果要求每一個因式的首項符號為正;

        (5)因式分解的最后結果要求加以整理;

        (6)因式分解的最后結果要求相同因式寫成乘方的形式.

        6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括號或全部括號;(10)拆項或補項.

        7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

      中考數學知識點總結10

        三角函數關系

        倒數關系

        tanα·cotα=1

        sinα·cscα=1

        cosα·secα=1

        商的關系

        sinα/cosα=tanα=secα/cscα

        cosα/sinα=cotα=cscα/secα

        平方關系

        sin^2(α)+cos^2(α)=1

        1+tan^2(α)=sec^2(α)

        1+cot^2(α)=csc^2(α)

        同角三角函數關系六角形記憶法

        構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

        倒數關系

        對角線上兩個函數互為倒數;

        商數關系

        六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。(主要是兩條虛線兩端的三角函數值的乘積,下面4個也存在這種關系。)。由此,可得商數關系式。

        平方關系

        在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。

        銳角三角函數定義

        銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。

        正弦(sin)等于對邊比斜邊;sinA=a/c

        余弦(cos)等于鄰邊比斜邊;cosA=b/c

        正切(tan)等于對邊比鄰邊;tanA=a/b

        余切(cot)等于鄰邊比對邊;cotA=b/a

        正割(sec)等于斜邊比鄰邊;secA=c/b

        余割(csc)等于斜邊比對邊。cscA=c/a

        互余角的三角函數間的關系

        sin(90°-α)=cosα,cos(90°-α)=sinα,

        tan(90°-α)=cotα,cot(90°-α)=tanα.

        平方關系:

        sin^2(α)+cos^2(α)=1

        tan^2(α)+1=sec^2(α)

        cot^2(α)+1=csc^2(α)

        積的關系:

        sinα=tanα·cosα

        cosα=cotα·sinα

        tanα=sinα·secα

        cotα=cosα·cscα

        secα=tanα·cscα

        cscα=secα·cotα

        倒數關系:

        tanα·cotα=1

        sinα·cscα=1

        cosα·secα=1

        中考數學知識點

        1、反比例函數的概念

        一般地,函數(k是常數,k0)叫做反比例函數。反比例函數的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數,函數的取值范圍也是一切非零實數。

        2、反比例函數的圖像

        反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數中自變量x0,函數y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

        3、反比例函數的性質

        反比例函數k的符號k>0k<0圖像yO xyO x性質①x的取值范圍是x0,

        y的取值范圍是y0;

        ②當k>0時,函數圖像的兩個分支分別

        在第一、三象限。在每個象限內,y

        隨x 的增大而減小。

        ①x的取值范圍是x0,

        y的取值范圍是y0;

        ②當k<0時,函數圖像的兩個分支分別

        在第二、四象限。在每個象限內,y

        隨x 的增大而增大。

        4、反比例函數解析式的確定

        確定及誒是的方法仍是待定系數法。由于在反比例函數中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

        5、反比例函數的幾何意義

        設是反比例函數圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

        (1)△OPA的面積.

        (2)矩形OAPB的面積。這就是系數的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

        矩形PCEF面積=,平行四邊形PDEA面積=

      中考數學知識點總結11

        函數

        ①位置的確定與平面直角坐標系

        位置的確定

        坐標變換

        平面直角坐標系內點的特征

        平面直角坐標系內點坐標的符號與點的象限位置

        對稱問題:P(x,y)→Q(x,- y)關于x軸對稱P(x,y)→Q(- x,y)關于y軸對稱P(x,y)→Q(- x,-y)關于原點對稱

        變量、自變量、因變量、函數的定義

        函數自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數的圖象:變量的變化趨勢描述

        ②一次函數與正比例函數

        一次函數的定義與正比例函數的定義

        一次函數的圖象:直線,畫法

        一次函數的性質(增減性)

        一次函數y=kx+b(k≠0)中k、b符號與圖象位置

        待定系數法求一次函數的解析式(一設二列三解四回)

        一次函數的平移問題

        一次函數與一元一次方程、一元一次不等式、二元一次方程的關系(圖象法)

        一次函數的實際應用

        一次函數的綜合應用(1)一次函數與方程綜合(2)一次函數與其它函數綜合(3)一次函數與不等式的綜合(4)一次函數與幾何綜合

      中考數學知識點總結12

        (1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

        (2)有理數的分類: ① 整數 ②分數

        (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

        (4)自然數 0和正整數;a0 a是正數;a0 a是負數;

        a≥0 a是正數或0 a是非負數;a≤ 0 ? a是負數或0 a是非正數.

        有理數比大小:

        (1)正數的絕對值越大,這個數越大;

        (2)正數永遠比0大,負數永遠比0小;

        (3)正數大于一切負數;

        (4)兩個負數比大小,絕對值大的反而小;

        (5)數軸上的兩個數,右邊的數總比左邊的數大;

        (6)大數-小數 0,小數-大數 0.

      中考數學知識點總結13

        一、代數式

        1. 概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數與字母連接而成的式子叫做代數式。單獨的一個數或字母也是代數式。

        2. 代數式的值:用數代替代數式里的字母,按照代數式的運算關系,計算得出的結果。

        二、整式

        單項式和多項式統稱為整式。

        1. 單項式:1)數與字母的乘積這樣的代數式叫做單項式。單獨的一個數或字母(可以是兩個數字或字母相乘)也是單項式。

        2) 單項式的系數:單項式中的 數字因數及性質符號叫做單項式的系數。

        3) 單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

        2. 多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項。一個多項式有幾項就叫做幾項式。

        2)多項式的次數:多項式中,次數最高的項的次數,就是這個多項式的次數。

        3. 多項式的排列:

        1).把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

        2).把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

        由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

        三、整式的運算

        1. 同類項——所含字母相同,并且相同字母的次數也相同的項叫做同類項,幾個常數項也叫同類項。同類項與系數無關,與字母排列的順序也無關。

        2. 合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

        3. 整式的加減:有括號的先算括號里面的,然后再合并同類項。

        4. 冪的運算:

        5. 整式的乘法:

        1) 單項式與單項式相乘法則:把它們的系數、同底數冪分別相乘,其余只在一個單項式里含有的字母連同它的指數作為積的因式。

        2) 單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。

        3) 多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

        6. 整式的除法

        1) 單項式除以單項式:把系數與同底數冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

        2) 多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。

        四、因式分解——把一個多項式化成幾個整式的積的形式

        1) 提公因式法:(公因式——多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。 取各項系數的最大公約數作為因式的系數,取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。

        2) 公式法:A.平方差公式; B.完全平方公式

      中考數學知識點總結14

        (1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

        (2)有理數的分類:①整數②分數

        (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

        (4)自然數0和正整數;a>0a是正數;a<0a是負數;

        a≥0a是正數或0a是非負數;a≤0?a是負數或0a是非正數.

        有理數比大小:

        (1)正數的絕對值越大,這個數越大;

        (2)正數永遠比0大,負數永遠比0小;

        (3)正數大于一切負數;

        (4)兩個負數比大小,絕對值大的反而小;

        (5)數軸上的兩個數,右邊的數總比左邊的數大;

        (6)大數-小數>0,小數-大數<0.

      中考數學知識點總結15

        一、 重要概念

        1。數的分類及概念

        數系表:

        說明:“分類”的原則:1)相稱(不重、不漏)

        2)有標準

        2。非負數:正實數與零的統稱。(表為:x≥0)

        常見的非負數有:

        性質:若干個非負數的和為0,則每個非負擔數均為0。

        3。倒數: ①定義及表示法

        ②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時,1/a1;D。積為1。

        4。相反數: ①定義及表示法

        ②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C。和為0,商為-1。

        5。數軸:①定義(“三要素”)

        ②作用:A。直觀地比較實數的大小;B。明確體現絕對值意義;C。建立點與實數的一一對應關系。

        6。奇數、偶數、質數、合數(正整數—自然數)

        定義及表示:

        奇數:2n-1

        偶數:2n(n為自然數)

        7。絕對值:①定義(兩種):

        代數定義:

        幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

        ②│a│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現,其關鍵一步是去掉“││”符號。

      【中考數學知識點總結】相關文章:

      蘇教版數學中考知識點總結07-28

      中考知識點總結數學整理01-26

      中考數學知識點總結11-06

      中考數學知識點總結08-11

      中考初中數學知識點總結05-09

      初中中考數學知識點總結04-22

      初三數學中考知識點總結09-21

      中考數學知識點學習總結11-06

      中考數學知識點總結(15篇)11-06

      中考數學知識點總結15篇11-06

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        日本中文字幕有码在线视频三级 | 亚洲Aⅴ狠狠爱一区二区三区 | 亚洲国产欧美在线 | 亚洲精品一本在线 | 亚洲精品视频在线观看播放 | 在线观看国产一区二三区 |