<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      高二數學知識點總結

      時間:2022-11-30 17:21:40 知識點總結 我要投稿

      高二數學知識點總結(集錦15篇)

        總結是對取得的成績、存在的問題及得到的經驗和教訓等方面情況進行評價與描述的一種書面材料,通過它可以正確認識以往學習和工作中的優缺點,不如我們來制定一份總結吧。如何把總結做到重點突出呢?下面是小編精心整理的高二數學知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

      高二數學知識點總結(集錦15篇)

      高二數學知識點總結1

        用樣本的數字特征估計總體的數字特征

        1、本均值:

        2、樣本標準差:

        3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。

        雖然我們用樣本數據得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。

        4.(1)如果把一組數據中的每一個數據都加上或減去同一個共同的常數,標準差不變

        (2)如果把一組數據中的每一個數據乘以一個共同的常數k,標準差變為原來的k倍

        (3)一組數據中的值和最小值對標準差的影響,區間的應用;

        “去掉一個分,去掉一個最低分”中的科學道理

      高二數學知識點總結2

        一、集合、簡易邏輯(14課時,8個)

        1、集合;

        2、子集;

        3、補集;

        4、交集;

        5、并集;

        6、邏輯連結詞;

        7、四種命題;

        8、充要條件。

        二、函數(30課時,12個)

        1、映射;

        2、函數;

        3、函數的單調性;

        4、反函數;

        5、互為反函數的函數圖象間的關系;

        6、指數概念的擴充;

        7、有理指數冪的運算;

        8、指數函數;

        9、對數;

        10、對數的運算性質;

        11、對數函數。

        12、函數的應用舉例。

        三、數列(12課時,5個)

        1、數列;

        2、等差數列及其通項公式;

        3、等差數列前n項和公式;

        4、等比數列及其通頂公式;

        5、等比數列前n項和公式。

        四、三角函數(46課時,17個)

        1、角的概念的推廣;

        2、弧度制;

        3、任意角的三角函數;

        4、單位圓中的三角函數線;

        5、同角三角函數的基本關系式;

        6、正弦、余弦的誘導公式;

        7、兩角和與差的正弦、余弦、正切;

        8、二倍角的正弦、余弦、正切;

        9、正弦函數、余弦函數的圖象和性質;

        10、周期函數;

        11、函數的奇偶性;

        12、函數的圖象;

        13、正切函數的圖象和性質;

        14、已知三角函數值求角;

        15、正弦定理;

        16、余弦定理;

        17、斜三角形解法舉例。

        五、平面向量(12課時,8個)

        1、向量;

        2、向量的加法與減法;

        3、實數與向量的積;

        4、平面向量的坐標表示;

        5、線段的定比分點;

        6、平面向量的數量積;

        7、平面兩點間的距離;

        8、平移。

        六、不等式(22課時,5個)

        1、不等式;

        2、不等式的基本性質;

        3、不等式的證明;

        4、不等式的解法;

        5、含絕對值的不等式。

        七、直線和圓的方程(22課時,12個)

        1、直線的傾斜角和斜率;

        2、直線方程的點斜式和兩點式;

        3、直線方程的一般式;

        4、兩條直線平行與垂直的條件;

        5、兩條直線的交角;

        6、點到直線的距離;

        7、用二元一次不等式表示平面區域;

        8、簡單線性規劃問題;

        9、曲線與方程的概念;

        10、由已知條件列出曲線方程;

        11、圓的標準方程和一般方程;

        12、圓的參數方程。

      高二數學知識點總結3

        已知函數有零點(方程有根)求參數取值常用的方法

        1、直接法:

        直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍。

        2、分離參數法:

        先將參數分離,轉化成求函數值域問題加以解決。

        3、數形結合法:

        先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解。

      高二數學知識點總結4

        異面直線定義:不同在任何一個平面內的兩條直線

        異面直線性質:既不平行,又不相交。

        異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

        異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

        求異面直線所成角步驟:

        A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

        (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

       。8)空間直線與平面之間的位置關系

        直線在平面內——有無數個公共點。

        三種位置關系的符號表示:aαa∩α=Aaα

       。9)平面與平面之間的位置關系:平行——沒有公共點;αβ

        相交——有一條公共直線。α∩β=b

        2、空間中的平行問題

       。1)直線與平面平行的判定及其性質

        線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。

        線線平行線面平行

        線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,

        那么這條直線和交線平行。線面平行線線平行

       。2)平面與平面平行的判定及其性質

        兩個平面平行的判定定理

       。1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

       。ň面平行→面面平行),

       。2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。

        (線線平行→面面平行),

       。3)垂直于同一條直線的兩個平面平行,

        兩個平面平行的性質定理

        (1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行)

       。2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

        3、空間中的垂直問題

        (1)線線、面面、線面垂直的定義

        兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

        線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

        平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

       。2)垂直關系的判定和性質定理

        線面垂直判定定理和性質定理

        判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。

        性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

        面面垂直的判定定理和性質定理

        判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。

        性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。

        4、空間角問題

        (1)直線與直線所成的角

        兩平行直線所成的角:規定為。

        兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

        兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

        (2)直線和平面所成的角

        平面的平行線與平面所成的角:規定為。平面的垂線與平面所成的角:規定為。

        平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。

        求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

        在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

        在解題時,注意挖掘題設中主要信息:

        (1)斜線上一點到面的垂線;

        (2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。

       。3)二面角和二面角的平面角

        二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

        二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

        直二面角:平面角是直角的二面角叫直二面角。

        兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

        求二面角的方法

        定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

        垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

      高二數學知識點總結5

        等差數列

        對于一個數列{an},如果任意相鄰兩項之差為一個常數,那么該數列為等差數列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

        那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

        將以上n—1個式子相加,便會接連消去很多相關的項,最終等式左邊余下an,而右邊則余下a1和n—1個d,如此便得到上述通項公式。

        此外,數列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復述。

        值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數列,利用這一特點可以使很多涉及Sn的數列問題迎刃而解。

        等比數列

        對于一個數列{an},如果任意相鄰兩項之商(即二者的比)為一個常數,那么該數列為等比數列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

        那么,通項公式為(即a1乘以q的(n—1)次方,其推導為“連乘原理”的思想:

        a2=a1Xq,

        a3=a2Xq,

        a4=a3Xq,

        ````````

        an=an—1Xq,

        將以上(n—1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n—1)個q的乘積,也即得到了所述通項公式。

        此外,當q=1時該數列的前n項和Tn=a1Xn

        當q≠1時該數列前n項的和Tn=a1X(1—q^(n))/(1—q)。

      高二數學知識點總結6

        1、向量的加法

        向量的加法滿足平行四邊形法則和三角形法則。

        AB+BC=AC。

        a+b=(x+x',y+y')。

        a+0=0+a=a。

        向量加法的運算律:

        交換律:a+b=b+a;

        結合律:(a+b)+c=a+(b+c)。

        2、向量的減法

        如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

        AB-AC=CB. 即“共同起點,指向被減”

        a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

        3、數乘向量

        實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

        當λ>0時,λa與a同方向;

        當λ<0時,λa與a反方向;

        當λ=0時,λa=0,方向任意。

        當a=0時,對于任意實數λ,都有λa=0。

        注:按定義知,如果λa=0,那么λ=0或a=0。

        實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

        當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

        當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

        數與向量的乘法滿足下面的運算律

        結合律:(λa)·b=λ(a·b)=(a·λb)。

        向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.

        數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

        數乘向量的消去律:① 如果實數λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

        4、向量的的數量積

        定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

        定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

        向量的數量積的坐標表示:a·b=x·x'+y·y'。

        向量的數量積的運算率

        a·b=b·a(交換率);

        (a+b)·c=a·c+b·c(分配率);

        向量的數量積的性質

        a·a=|a|的平方。

        a⊥b 〈=〉a·b=0。

        |a·b|≤|a|·|b|。

      高二數學知識點總結7

        一、直線與圓:

        1、直線的傾斜角的范圍是

        在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

        2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα。

        過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

        3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

       、菩苯厥剑褐本在軸上的截距為和斜率,則直線方程為

        4、,①∥,;②。

        直線與直線的位置關系:

       。1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

        5、點到直線的距離公式;

        兩條平行線與的距離是

        6、圓的標準方程:。⑵圓的一般方程:

        注意能將標準方程化為一般方程

        7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線。

        8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題。①相離②相切③相交

        9、解決直線與圓的關系問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

        二、圓錐曲線方程:

        1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

        2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

        3、拋物線:①方程y2=2px注意還有三個,能區別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

        4、直線被圓錐曲線截得的弦長公式:

        5、注意解析幾何與向量結合問題:1、,。(1);(2)。

        2、數量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數量|a||b|cosθ叫做a與b的數量積,記作a·b,即

        3、模的計算:|a|=。算?梢韵人阆蛄康钠椒

        4、向量的運算過程中完全平方公式等照樣適用:

        三、直線、平面、簡單幾何體:

        1、學會三視圖的分析:

        2、斜二測畫法應注意的地方:

       。1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

        3、表(側)面積與體積公式:

        ⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

       、棋F體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

       、桥_體①表面積:S=S側+S上底S下底②側面積:S側=

        ⑷球體:①表面積:S=;②體積:V=

        4、位置關系的證明(主要方法):注意立體幾何證明的書寫

       。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

       。2)平面與平面平行:①線面平行面面平行。

        (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

        5、求角:(步驟——Ⅰ。找或作角;Ⅱ。求角)

        ⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

       、浦本與平面所成的角:直線與射影所成的角

        四、導數:導數的意義-導數公式-導數應用(極值最值問題、曲線切線問題)

        1、導數的定義:在點處的導數記作。

        2、導數的幾何物理意義:曲線在點處切線的斜率

        ①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

        3、常見函數的導數公式:①;②;③;

        ⑤;⑥;⑦;⑧。

        4、導數的四則運算法則:

        5、導數的應用:

       。1)利用導數判斷函數的單調性:設函數在某個區間內可導,如果,那么為增函數;如果,那么為減函數;

        注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。

        (2)求極值的步驟:

       、偾髮;

        ②求方程的根;

        ③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;

        (3)求可導函數最大值與最小值的步驟:

       、∏蟮母;ⅱ把根與區間端點函數值比較,最大的為最大值,最小的是最小值。

        五、常用邏輯用語:

        1、四種命題:

       、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

        注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

        2、注意命題的否定與否命題的區別:命題否定形式是;否命題是。命題“或”的否定是“且”;“且”的否定是“或”。

        3、邏輯聯結詞:

        ⑴且(and):命題形式pq;pqpqpqp

        ⑵或(or):命題形式pq;真真真真假

        ⑶非(not):命題形式p。真假假真假

        假真假真真

        假假假假真

        “或命題”的真假特點是“一真即真,要假全假”;

        “且命題”的真假特點是“一假即假,要真全真”;

        “非命題”的真假特點是“一真一假”

        4、充要條件

        由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

        5、全稱命題與特稱命題:

        短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

        短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

        全稱命題p:;全稱命題p的否定p:。

        特稱命題p:;特稱命題p的否定p:

      高二數學知識點總結8

        第一章:三角函數?荚嚤乜碱}。誘導公式和基本三角函數圖像的一些性質只要記住會畫圖就行,難度在于三角函數形函數的振幅、頻率、周期、相位、初相,及根據最值計算A、B的值和周期,及等變化時圖像及性質的變化,這一知識點內容較多,需要多花時間,首先要記憶,其次要多做題強化練習,只要能踏踏實實去做,也不難掌握,畢竟不存在理解上的`難度。

        第二章:平面向量。個人覺得這一章難度較大,這也是我掌握最差的一章。向量的運算性質及三角形法則平行四邊形法則難度都不大,只要在計算的時候記住要同起點的向量。向量共線和垂直的數學表達,這是計算當中經常要用的公式。向量的共線定理、基本定理、數量積公式。難點在于分點坐標公式,首先要準確記憶。向量在考試過程一般不會單獨出現,常常是作為解題要用的工具出現,用向量時要首先找出合適的向量,個人認為這個比較難,常常找不對。有同樣情況的同學建議多看有關題的圖形。

        第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫之后貼在桌子上,天天都要看。而且的三角函數變換都有一定的規律,記憶的時候可以結合起來去記。除此之外,就是多練習。要從多練習中找到變換的規律,比如一般都要化等等。這一章也是考試必考,所以一定要重點掌握。

      高二數學知識點總結9

        【不等關系及不等式】

        一、不等關系及不等式知識點

        1.不等式的定義

        在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號、、連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

        2.比較兩個實數的大小

        兩個實數的大小是用實數的運算性質來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

        3.不等式的性質

        (1)對稱性:ab

        (2)傳遞性:ab,ba

        (3)可加性:aa+cb+c,ab,ca+c

        (4)可乘性:ab,cacb0,c0bd;

        (5)可乘方:a0bn(nN,n

        (6)可開方:a0

        (nN,n2).

        注意:

        一個技巧

        作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

        一種方法

        待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質求出目標式的范圍.

      高二數學知識點總結10

        1、學會三視圖的分析:

        2、斜二測畫法應注意的地方:

       。1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

        3、表(側)面積與體積公式:

       、胖w:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

        ⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

       、桥_體①表面積:S=S側+S上底S下底②側面積:S側=

       、惹蝮w:①表面積:S=;②體積:V=

        4、位置關系的證明(主要方法):注意立體幾何證明的書寫

       。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

       。2)平面與平面平行:①線面平行面面平行。

        (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

        5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)

       、女惷嬷本所成角的求法:平移法:平移直線,構造三角形;

       、浦本與平面所成的角:直線與射影所成的角

      高二數學知識點總結11

        排列組合

        排列P------和順序有關

        組合C-------不牽涉到順序的問題

        排列分順序,組合不分

        例如把5本不同的書分給3個人,有幾種分法."排列"

        把5本書分給3個人,有幾種分法"組合"

        1.排列及計算公式

        從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.

        p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).

        2.組合及計算公式

        從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號

        c(n,m)表示.

        c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

        3.其他排列與組合公式

        從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.

        n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為

        n!/(n1!_2!_.._k!).

        k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).

        排列(Pnm(n為下標,m為上標))

        Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

        組合(Cnm(n為下標,m為上標))

        Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

        20xx-07-0813:30

        公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9________

        從N倒數r個,表達式應該為n_n-1)_n-2)..(n-r+1);

        因為從n到(n-r+1)個數為n-(n-r+1)=r

      高二數學知識點總結12

        平面向量

        戴氏航天學校老師總結加法與減法的代數運算:

        (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

        向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

        戴氏航天學校老師總結向量加法有如下規律:+= +(交換律); +( +c)=( + )+c (結合律);

        兩個向量共線的充要條件:

        (1) 向量b與非零向量共線的充要條件是有且僅有一個實數,使得b= .

        (2) 若=(),b=()則‖b .

        平面向量基本定理:

        若e1、e2是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量,戴氏航天學校老師提醒有且只 有一對實數,,使得= e1+ e2

      高二數學知識點總結13

        在中國古代把數學叫算術,又稱算學,最后才改為數學。

        1.任意角

       。1)角的分類:

       、侔葱D方向不同分為正角、負角、零角。

        ②按終邊位置不同分為象限角和軸線角。

       。2)終邊相同的角:

        終邊與角相同的角可寫成+k360(kZ)。

       。3)弧度制:

        ①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。

        ②規定:正角的弧度數為正數,負角的弧度數為負數,零角的弧度數為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑。

       、塾没《茸鰡挝粊矶攘拷堑闹贫冉凶龌《戎啤1戎蹬c所取的r的大小無關,僅與角的大小有關。

       、芑《扰c角度的換算:360弧度;180弧度。

        ⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.

        2.任意角的三角函數

        (1)任意角的三角函數定義:

        設是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數值的函數。

        (2)三角函數在各象限內的符號口訣是:一全正、二正弦、三正切、四余弦。

        3.三角函數線

        設角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M。由三角函數的定義知,點P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan =AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。

      高二數學知識點總結14

        第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。

        第二章:數列。考試必考。等差等比數列的通項公式、前n項和及一些性質。這一章屬于學起來很容易,但做題卻不會做的類型?荚囶}中,一般都是要求通項公式、前n項和,所以拿到題目之后要帶有目的的去推導。

        第三章:不等式。這一章一般用線性規劃的形式來考察。這種題一般是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖。然后再根據實際問題的限制要求求最值。

        選修中的簡單邏輯用語、圓錐曲線和導數:邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關系,邏輯連接詞,及否命題和命題的否定的區別,考試一般會用選擇題考這一知識點,難度不大;圓錐曲線一般作為考試的壓軸題出現。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達式難度就不大。后面兩到三問難打一般會很大,而且較費時間。所以不建議做。

        這一章屬于學的比較難,考試也比較難,但是考試要求不高的內容;導數,導數公式、運算法則、用導數求極值和最值的方法。一般會考察用導數求最值,會用導數公式就難度不大。

      高二數學知識點總結15

        考點一:求導公式。

        例1.f(x)是f(x)13x2x1的導函數,則f(1)的值是3

        考點二:導數的幾何意義。

        例2.已知函數yf(x)的圖象在點M(1,f(1))處的切線方程是y

        1x2,則f(1)f(1)2

        ,3)處的切線方程是例3.曲線yx32x24x2在點(1

        點評:以上兩小題均是對導數的幾何意義的考查。

        考點三:導數的幾何意義的應用。

        例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點x0,y0x00,求直線l的方程及切點坐標。

        點評:本小題考查導數幾何意義的應用。解決此類問題時應注意“切點既在曲線上又在切線上”這個條件的應用。函數在某點可導是相應曲線上過該點存在切線的充分條件,而不是必要條件。

        考點四:函數的單調性。

        例5.已知fxax3_1在R上是減函數,求a的取值范圍。32

        點評:本題考查導數在函數單調性中的應用。對于高次函數單調性問題,要有求導意識。

        考點五:函數的極值。

        例6.設函數f(x)2x33ax23bx8c在x1及x2時取得極值。

        (1)求a、b的值;

        (2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。

        點評:本題考查利用導數求函數的極值。求可導函數fx的極值步驟:

       、偾髮礷'x;

        ②求f'x0的根;③將f'x0的根在數軸上標出,得出單調區間,由f'x在各區間上取值的正負可確定并求出函數fx的極值。

      【高二數學知識點總結】相關文章:

      高二的數學的知識點總結04-22

      數學高二知識點總結04-22

      高二數學的知識點總結12-02

      高二數學知識點總結02-19

      數學高二知識點總結歸納12-29

      高二數學的數列知識點總結03-30

      高二數學下冊知識點總結03-30

      高二數學知識點總結08-04

      高二數學知識點總結12-04

      高二數學必修五知識點總結02-08

      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        原创AV巨作无遮挡国产 | 日本玖玖资源在线 | 婷婷视频在线观看免费播放 | 丝袜美腿一区二区三区 | 亚洲综合久久久中文字幕 | 中文字幕免费大全日本一片 |