高一數學知識點總結
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質的理性認識上來,不如立即行動起來寫一份總結吧?偨Y怎么寫才能發揮它的作用呢?以下是小編精心整理的高一數學知識點總結,僅供參考,歡迎大家閱讀。
高一數學知識點總結1
集合的運算
運算類型交 集并 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過定點(0,1)函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
。1)在[a,b]上, 值域是 或 ;
。2)若 ,則 ; 取遍所有正數當且僅當 ;
。3)對于指數函數 ,總有 ;
二、對數函數
。ㄒ唬⿲
1.對數的概念:
一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
。 N = b
底數
指數 對數
。ǘ⿲档倪\算性質
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恒等式
。ǘ⿲岛瘮
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>10 定義域x>0定義域x>0 值域為R值域為R 在R上遞增在R上遞減 函數圖象都過定點(1,0)函數圖象都過定點(1,0) 。ㄈ﹥绾瘮 1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數. 2、冪函數性質歸納. (1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1); 。2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸; 。3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸. 第四章 函數的應用 一、方程的根與函數的零點 1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。 2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。 即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點. 3、函數零點的求法: ○1 (代數法)求方程 的實數根; ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點. 4、二次函數的零點: 二次函數 . 。1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點. 。2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點. 。3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點. 5.函數的模型 【(一)、映射、函數、反函數】 1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射. 2、對于函數的概念,應注意如下幾點: (1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數. (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式. (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數. 3、求函數y=f(x)的反函數的一般步驟: (1)確定原函數的值域,也就是反函數的定義域; (2)由y=f(x)的解析式求出x=f-1(y); (3)將x,y對換,得反函數的習慣表達式y=f-1(x),并注明定義域. 注意①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起. 、谑煜さ膽,求f-1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算. 【(二)、函數的解析式與定義域】 1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變量間的對應法則的同時,求出函數的定義域.求函數的定義域一般有三種類型: (1)有時一個函數來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮; (2)已知一個函數的解析式求其定義域,只要使解析式有意義即可.如: ①分式的分母不得為零; ②偶次方根的被開方數不小于零; 、蹖岛瘮档恼鏀当仨毚笥诹; ④指數函數和對數函數的底數必須大于零且不等于1; ⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等. 應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集). (3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可. 已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域. 2、求函數的解析式一般有四種情況 (1)根據某實際問題需建立一種函數關系時,必須引入合適的變量,根據數學的有關知識尋求函數的解析式. (2)有時題設給出函數特征,求函數的解析式,可采用待定系數法.比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可. (3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數的定義域. (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式. 【(三)、函數的值域與最值】 1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下: (1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域. (2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元. (3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得. (4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法. (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧. (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式. (7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域. (8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域. 2、求函數的最值與值域的區別和聯系 求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異. 如函數的值域是(0,16],值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響. 3、函數的最值在實際問題中的應用 函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值. 【(四)、函數的奇偶性】 1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數). 正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關于原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數定義域上的整體性質). 2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式: 注意如下結論的運用: (1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數; (2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”; (3)奇偶函數的復合函數的奇偶性通常是偶函數; (4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。 3、有關奇偶性的幾個性質及結論 (1)一個函數為奇函數的充要條件是它的圖象關于原點對稱;一個函數為偶函數的充要條件是它的圖象關于y軸對稱. (2)如要函數的定義域關于原點對稱且函數值恒為零,那么它既是奇函數又是偶函數. (3)若奇函數f(x)在x=0處有意義,則f(0)=0成立. (4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。 (5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(-x)是偶函數,G(x)=f(x)-f(-x)是奇函數. (6)奇偶性的推廣 函數y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數.函數y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。 【(五)、函數的單調性】 1、單調函數 對于函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數. 對于函數單調性的定義的理解,要注意以下三點: (1)單調性是與“區間”緊密相關的概念.一個函數在不同的區間上可以有不同的單調性. (2)單調性是函數在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替. (3)單調區間是定義域的子集,討論單調性必須在定義域范圍內. (4)注意定義的兩種等價形式: 設x1、x2∈[a,b],那么: 、僭赱a、b]上是增函數; 在[a、b]上是減函數. ②在[a、b]上是增函數. 在[a、b]上是減函數. 需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零. (5)由于定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說明單調性使得自變量間的不等關系和函數值之間的不等關系可以“正逆互推”. 5、復合函數y=f[g(x)]的單調性 若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”. 在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握并熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程. 6、證明函數的單調性的方法 (1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論. (2)設函數y=f(x)在某區間內可導. 如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數. 【(六)、函數的圖象】 函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識. 求作圖象的函數表達式 與f(x)的關系 由f(x)的圖象需經過的變換 y=f(x)±b(b>0) 沿y軸向平移b個單位 y=f(x±a)(a>0) 沿x軸向平移a個單位 y=-f(x) 作關于x軸的對稱圖形 y=f(|x|) 右不動、左右關于y軸對稱 y=|f(x)| 上不動、下沿x軸翻折 y=f-1(x) 作關于直線y=x的對稱圖形 y=f(ax)(a>0) 橫坐標縮短到原來的,縱坐標不變 y=af(x) 縱坐標伸長到原來的|a|倍,橫坐標不變 y=f(-x) 作關于y軸對稱的圖形 【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0. 、偾笞C:f(0)=1; 、谇笞C:y=f(x)是偶函數; ③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由. 思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般采用賦值法. 解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1. ②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數. 、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)= 所以,所以f(x+c)=-f(x). 兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x), 所以f(x)是周期函數,2c就是它的一個周期. 1.函數的奇偶性 (1)若f(x)是偶函數,那么f(x)=f(-x); (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數); (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性; (5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性; 2.復合函數的有關問題 (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。 (2)復合函數的單調性由“同增異減”判定; 3.函數圖像(或方程曲線的對稱性) (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上; (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然; (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0; (5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱; (6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱; 4.函數的周期性 (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數; (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數; (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數; (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數; (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數; (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數; 5.方程k=f(x)有解k∈D(D為f(x)的值域); 6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min; 7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符號由口訣“同正異負”記憶;(4)alogaN=N(a>0,a≠1,N>0); 8.判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。 10.對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A). 11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系; 12.依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題 13.恒成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解; 1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表: 解析式 頂點坐標 對稱軸 y=ax^2 (0,0) x=0 y=a(x-h)^2 (h,0) x=h y=a(x-h)^2+k (h,k) x=h y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a 當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到, 當h<0時,則向左平行移動|h|個單位得到. 當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象; 當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象; 當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象; 當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象; 因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便. 2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a). 3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小. 4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點: (1)圖象與y軸一定相交,交點坐標為(0,c); (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的兩根.這兩點間的距離AB=|x?-x?| 當△=0.圖象與x軸只有一個交點; 當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0. 5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a. 頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值. 6.用待定系數法求二次函數的解析式 (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式: y=ax^2+bx+c(a≠0). (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0). (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的函數C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上. (2)畫法 A、描點法: B、圖象變換法 常用變換方法有三種 1)平移變換 2)伸縮變換 3)對稱變換 4.高中數學函數區間的概念 (1)函數區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間 5.映射 一般地,設A、B是兩個非空的函數,如果按某一個確定的對應法則f,使對于函數A中的任意一個元素x,在函數B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數A到函數B的一個映射。記作“f(對應關系):A(原象)B(象)” 對于映射f:A→B來說,則應滿足: (1)函數A中的每一個元素,在函數B中都有象,并且象是的; (2)函數A中不同的元素,在函數B中對應的象可以是同一個; (3)不要求函數B中的每一個元素在函數A中都有原象。 6.高中數學函數之分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。 (2)各部分的自變量的取值情況. (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數 如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。 一、集合有關概念 1. 集合的含義 2. 集合的中元素的三個特性: (1) 元素的確定性, (2) 元素的互異性, (3) 元素的無序性, 3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} (2) 集合的表示方法:列舉法與描述法。 ? 注意:常用數集及其記法: 非負整數集(即自然數集) 記作:N 正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R 1) 列舉法:{a,b,c……} 2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2} 3) 語言描述法:例:{不是直角三角形的三角形} 4) Venn圖: 4、集合的分類: (1) 有限集 含有有限個元素的集合 (2) 無限集 含有無限個元素的集合 (3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關系 1.“包含”關系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關系:A=B (5≥5,且5≤5,則5=5) 實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等” 即:① 任何一個集合是它本身的子集。A?A ②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A) 、廴绻 A?B, B?C ,那么 A?C 、 如果A?B 同時 B?A 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ? 有n個元素的集合,含有2n個子集,2n-1個真子集 三、集合的運算 運算類型 交 集 并 集 補 集 定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}. 由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}). 設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) 二、函數的有關概念 1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域. 注意: 1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。 求函數的定義域時列不等式組的主要依據是: (1)分式的分母不等于零; (2)偶次方根的被開方數不小于零; (3)對數式的真數必須大于零; (4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數為零底不可以等于零, (7)實際問題中的函數的定義域還要保證實際問題有意義. 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備) 2.值域 : 先考慮其定義域 (1)觀察法 (2)配方法 (3)代換法 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . (2) 畫法 A、 描點法: B、 圖象變換法 常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 4.區間的概念 (1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間 (3)區間的數軸表示. 5.映射 一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的'元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B 6.分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。 (2)各部分的自變量的取值情況. (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數 如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。 二.函數的性質 1.函數的單調性(局部性質) (1)增函數 設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1 如果對于區間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間. 注意:函數的單調性是函數的局部性質; (2) 圖象的特點 如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的. (3).函數單調區間與單調性的判定方法 (A) 定義法: ○1 任取x1,x2∈D,且x1 ○2 作差f(x1)-f(x2); ○3 變形(通常是因式分解和配方); ○4 定號(即判斷差f(x1)-f(x2)的正負); ○5 下結論(指出函數f(x)在給定的區間D上的單調性). (B)圖象法(從圖象上看升降) (C)復合函數的單調性 復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減” 注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集. 8.函數的奇偶性(整體性質) (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數. (3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 利用定義判斷函數奇偶性的步驟: ○1首先確定函數的定義域,并判斷其是否關于原點對稱; ○2確定f(-x)與f(x)的關系; ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 . 9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2)求函數的解析式的主要方法有: 1) 湊配法 2) 待定系數法 3) 換元法 4) 消參法 10.函數最大(小)值(定義見課本p36頁) ○1 利用二次函數的性質(配方法)求函數的最大(小)值 ○2 利用圖象求函數的最大(小)值 ○3 利用函數單調性的判斷函數的最大(小)值: 如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b); 如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b); 圓的方程定義: 圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。 直線和圓的位置關系: 1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。 、佴>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。 方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。 ①dR,直線和圓相離、 2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。 3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。 切線的性質 ⑴圓心到切線的距離等于圓的半徑; 、七^切點的半徑垂直于切線; ⑶經過圓心,與切線垂直的直線必經過切點; 、冉涍^切點,與切線垂直的直線必經過圓心; 當一條直線滿足 。1)過圓心; 。2)過切點; 。3)垂直于切線三個性質中的兩個時,第三個性質也滿足。 切線的判定定理 經過半徑的外端點并且垂直于這條半徑的直線是圓的切線。 切線長定理 從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。 本節內容主要是空間點、直線、平面之間的位置關系,在認識過程中,可以進一步提高同學們的空間想象能力,發展推理能力.通過對實際模型的認識,學會將文字語言轉化為圖形語言和符號語言,以具體的長方體中的點、線、面之間的關系作為載體,使同學們在直觀感知的基礎上,認識空間中點、線、面之間的位置關系,點、線、面的位置關系是立體幾何的主要研究對象,同時也是空間圖形最基本的幾何元素. 重難點知識歸納 1、平面 (1)平面概念的理解 直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分. 抽象的理解:平面是平的,平面是無限延展的,平面沒有厚薄. (2)平面的表示法 、賵D形表示法:通常用平行四邊形來表示平面,有時根據實際需要,也用其他的平面圖形來表示平面. 、谧帜副硎荆撼S玫认ED字母表示平面. (3)涉及本部分內容的符號表示有: ①點A在直線l內,記作; ②點A不在直線l內,記作; 、埸cA在平面內,記作; ④點A不在平面內,記作; ⑤直線l在平面內,記作; ⑥直線l不在平面內,記作; 注意:符號的使用與集合中這四個符號的使用的區別與聯系. (4)平面的基本性質 公理1:如果一條直線的兩個點在一個平面內,那么這條直線上的所有點都在這個平面內. 符號表示為:. 注意:如果直線上所有的點都在一個平面內,我們也說這條直線在這個平面內,或者稱平面經過這條直線. 公理2:過不在一條直線上的三點,有且只有一個平面. 符號表示為:直線AB存在唯一的平面,使得. 注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點確定一個平面. 公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線. 符號表示為:. 注意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線.若平面、平面相交于直線l,記作. 公理的推論: 推論1:經過一條直線和直線外的一點有且只有一個平面. 推論2:經過兩條相交直線有且只有一個平面. 推論3:經過兩條平行直線有且只有一個平面. 2.空間直線 (1)空間兩條直線的位置關系 、傧嘟恢本:有且僅有一個公共點,可表示為; 、谄叫兄本:在同一個平面內,沒有公共點,可表示為a//b; 、郛惷嬷本:不同在任何一個平面內,沒有公共點. (2)平行直線 公理4:平行于同一條直線的兩條直線互相平行. 符號表示為:設a、b、c是三條直線,. 定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等. (3)兩條異面直線所成的角 注意: 、賰蓷l異面直線a,b所成的角的范圍是(0°,90°]. 、趦蓷l異面直線所成的角與點O的選擇位置無關,這可由前面所講過的“等角定理”直接得出. 、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法: (i)在空間任取一點,這個點通常是線段的中點或端點. (ii)分別作兩條異面直線的平行線,這個過程通常采用平移的方法來實現. (iii)指出哪一個角為兩條異面直線所成的角,這時我們要注意兩條異面直線所成的角的范圍. 3.空間直線與平面 直線與平面位置關系有且只有三種: (1)直線在平面內:有無數個公共點; (2)直線與平面相交:有且只有一個公共點; (3)直線與平面平行:沒有公共點. 4.平面與平面 兩個平面之間的位置關系有且只有以下兩種: (1)兩個平面平行:沒有公共點; (2)兩個平面相交:有一條公共直線. 立體幾何初步 1、柱、錐、臺、球的結構特征 (1)棱柱: 定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。 幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等 表示:用各頂點字母,如五棱錐 幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。 (3)棱臺: 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。 分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等 表示:用各頂點字母,如五棱臺 幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點 (4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。 幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。 幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。 (6)圓臺: 定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。 (7)球體: 定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。 2、空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下) 注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度; 俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度; 側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。 3、空間幾何體的直觀圖——斜二測畫法 斜二測畫法特點: 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變; 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。 直線與方程 (1)直線的傾斜角 定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180° (2)直線的斜率 ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。 、谶^兩點的直線的斜率公式: 注意下面四點: (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°; (2)k與P1、P2的順序無關; (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得; (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。 冪函數 定義: 形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。 定義域和值域: 當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域 性質: 對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性: 首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道: 排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數; 排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數; 排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。 指數函數 (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。 (2)指數函數的值域為大于0的實數集合。 (3)函數圖形都是下凹的。 (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。 (5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。 (6)函數總是在某一個方向上無限趨向于X軸,永不相交。 (7)函數總是通過(0,1)這點。 (8)顯然指數函數無界。 奇偶性 定義 一般地,對于函數f(x) (1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。 (2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。 (3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。 (4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。 冪函數的性質: 對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性: 首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道: 排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數; 排除了為0這種可能,即對于x<0x="">0的所有實數,q不能是偶數; 排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。 總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數; 如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。 在x大于0時,函數的值域總是大于0的實數。 在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。 而只有a為正數,0才進入函數的值域。 由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況. 可以看到: (1)所有的圖形都通過(1,1)這點。 (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。 (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。 (4)當a小于0時,a越小,圖形傾斜程度越大。 (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。 (6)顯然冪函數_。 解題方法:換元法 解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。 換元法又稱輔助元素法、變量代換法.通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來.或者變為熟悉的形式,把復雜的計算和推證簡化。 它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。 練習題: 1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1). (1)求f(log2x)的最小值及對應的x值; (2)x取何值時,f(log2x)>f(1)且log2[f(x)] 2、已知函數f(x)=3x+k(k為常數),A(-2k,2)是函數y=f-1(x)圖象上的點.[來源:Z_k.Com] (1)求實數k的值及函數f-1(x)的解析式; (2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數y=g(x)的圖象,若2f-1(x+-3)-g(x)≥1恒成立,試求實數m的取值范圍. 集合具有某種特定性質的事物的總體。這里的事物可以是人,物品,也可以是數學元素。 例如: 1、分散的人或事物聚集到一起;使聚集:緊急~。 2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。 3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論?低校–antor,G、F、P、,1845年1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。 集合,在數學上是一個基礎概念。 什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。 集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。 集合與集合之間的關系 某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。 。ㄕf明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。) 知識點總結 本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。 一、函數的單調性 1、函數單調性的定義 2、函數單調性的判斷和證明:(1)定義法 (2)復合函數分析法 (3)導數證明法 (4)圖象法 二、函數的奇偶性和周期性 1、函數的奇偶性和周期性的定義 2、函數的奇偶性的判定和證明方法 3、函數的周期性的判定方法 三、函數的圖象 1、函數圖象的作法 (1)描點法 (2)圖象變換法 2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。 常見考法 本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。 誤區提醒 1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問題定義域優先的原則”。 2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。 3、在多個單調區間之間不能用“或”和“ ”連接,只能用逗號隔開。 4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關于原點對稱,則函數一定是非奇非偶函數。 5、作函數的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數的圖象。 棱錐 棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐 棱錐的的性質: (1)側棱交于一點。側面都是三角形 (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方 正棱錐 正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。 正棱錐的性質: (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。 (3)多個特殊的直角三角形 esp: a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。 b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。 數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。小編準備了高一數學必修1期末考知識點,希望你喜歡。 一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素. 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素. (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素. (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣. (4)集合元素的三個特性使集合本身具有了確定性和整體性. 3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法. 注意。撼S脭导捌溆浄ǎ 非負整數集(即自然數集)記作:N 正整數集 N*或N+ 整數集Z 有理數集Q 實數集R 關于屬于的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上. 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法. ①語言描述法:例:{不是直角三角形的三角形} ②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32} 4、集合的分類: 1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關系 1.包含關系子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合. 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.相等關系(55,且55,則5=5) 實例:設 A={x|x2-1=0} B={-1,1} 元素相同 結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B ① 任何一個集合是它本身的子集.AA 、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A) 、廴绻 AB, BC ,那么 AC ④ 如果AB 同時 BA 那么A=B 3. 不含任何元素的集合叫做空集,記為 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作AB(讀作A交B),即AB={x|xA,且xB}. 2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}. 3、交集與并集的性質:AA = A, A=, AB = BA,AA = A, A= A ,AB = BA. 4、全集與補集 (1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示. (3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U 集合間的基本關系 1.“包含”關系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關系(5≥5,且5≤5,則5=5) 實例:設 A={x|x2-1=0} B={-1,1} “元素相同” 結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B A?① 任何一個集合是它本身的子集。A B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A C?C ,那么 A?B, B?③如果 A A 那么A=B?B 同時 B?④ 如果A 3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集與補集 (1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) A}?S且 x? x?記作: CSA 即 CSA ={x (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。 (3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 【高一數學知識點總結】相關文章: 高一數學知識點總結07-20 高一數學必修一知識點總結08-09 高一政治知識點總結12-12 高一化學知識點總結01-12 高一歷史知識點總結12-11 高考數學知識點總結05-18 高一歷史古代中國知識點總結01-27 高一政治必修一知識點總結12-12 高一物理必修一知識點總結05-04 高一語文必修一知識點總結01-12高一數學知識點總結2
高一數學知識點總結3
高一數學知識點總結4
高一數學知識點總結5
高一數學知識點總結6
高一數學知識點總結7
高一數學知識點總結8
高一數學知識點總結9
高一數學知識點總結10
高一數學知識點總結11
高一數學知識點總結12
高一數學知識點總結13
高一數學知識點總結14
高一數學知識點總結15